Edexcel D2 2002 June — Question 7

Exam BoardEdexcel
ModuleD2 (Decision Mathematics 2)
Year2002
SessionJune
TopicNetwork Flows

7. A steel manufacturer has 3 factories \(F _ { 1 } , F _ { 2 }\) and \(F _ { 3 }\) which can produce 35,25 and 15 kilotonnes of steel per year, respectively. Three businesses \(B _ { 1 } , B _ { 2 }\) and \(B _ { 3 }\) have annual requirements of 20,25 and 30 kilotonnes respectively. The table below shows the cost \(C _ { i j }\) in appropriate units, of transporting one kilotonne of steel from factory \(F _ { i }\) to business \(B _ { j }\).
\cline { 3 - 5 } \multicolumn{2}{c|}{}Business
\cline { 3 - 5 } \multicolumn{2}{c|}{}\(B _ { 1 }\)\(B _ { 2 }\)\(B _ { 3 }\)
\multirow{3}{*}{Factory}\(F _ { 1 }\)10411
\cline { 2 - 5 }\(F _ { 2 }\)1258
\cline { 2 - 5 }\(F _ { 3 }\)967
The manufacturer wishes to transport the steel to the businesses at minimum total cost.
  1. Write down the transportation pattern obtained by using the North-West corner rule.
  2. Calculate all of the improvement indices \(I _ { i j }\), and hence show that this pattern is not optimal.
  3. Use the stepping-stone method to obtain an improved solution.
  4. Show that the transportation pattern obtained in part (c) is optimal and find its cost.