AQA D2 2010 June — Question 4

Exam BoardAQA
ModuleD2 (Decision Mathematics 2)
Year2010
SessionJune
TopicGroups

4 Two people, Roger and Corrie, play a zero-sum game.
The game is represented by the following pay-off matrix for Roger.
Corrie
\cline { 2 - 5 }Strategy\(\mathbf { C } _ { \mathbf { 1 } }\)\(\mathbf { C } _ { \mathbf { 2 } }\)\(\mathbf { C } _ { \mathbf { 3 } }\)
\cline { 2 - 5 } Roger\(\mathbf { R } _ { \mathbf { 1 } }\)73- 5
\cline { 2 - 5 }\(\mathbf { R } _ { \mathbf { 2 } }\)- 2- 14
\cline { 2 - 5 }
\cline { 2 - 5 }
    1. Find the optimal mixed strategy for Roger.
    2. Show that the value of the game is \(\frac { 7 } { 13 }\).
  1. Given that the value of the game is \(\frac { 7 } { 13 }\), find the optimal mixed strategy for Corrie.
    \includegraphics[max width=\textwidth, alt={}]{c4dc61a7-47ee-4d5c-bf6d-30a5da2ee8dd-09_2484_1709_223_153}