AQA D2 2012 January — Question 4

Exam BoardAQA
ModuleD2 (Decision Mathematics 2)
Year2012
SessionJanuary
TopicThe Simplex Algorithm

4 A linear programming problem consists of maximising an objective function \(P\) involving three variables, \(x , y\) and \(z\), subject to constraints given by three inequalities other than \(x \geqslant 0 , y \geqslant 0\) and \(z \geqslant 0\). Slack variables \(s , t\) and \(u\) are introduced and the Simplex method is used to solve the problem. One iteration of the method leads to the following tableau.
\(\boldsymbol { P }\)\(\boldsymbol { x }\)\(\boldsymbol { y }\)\(\boldsymbol { Z }\)\(\boldsymbol { s }\)\(\boldsymbol { t }\)\(\boldsymbol { u }\)value
1-21103006
02311002
06-300-6103
0-1-90-3014
    1. State the column from which the pivot for the next iteration should be chosen. Identify this pivot and explain the reason for your choice.
    2. Perform the next iteration of the Simplex method.
    1. Explain why you know that the maximum value of \(P\) has been achieved.
    2. State how many of the three original inequalities still have slack.
    1. State the maximum value of \(P\) and the values of \(x , y\) and \(z\) that produce this maximum value.
    2. The objective function for this problem is \(P = k x - 2 y + 3 z\), where \(k\) is a constant. Find the value of \(k\).
      \includegraphics[max width=\textwidth, alt={}]{b23828c8-01ee-4b5a-b6d2-41b7e27190d6-11_2486_1714_221_153}