AQA D2 2012 January — Question 2

Exam BoardAQA
ModuleD2 (Decision Mathematics 2)
Year2012
SessionJanuary
TopicPermutations & Arrangements
TypeOptimization assignment problems

2 A team with five members is training to take part in a quiz. The team members, Abby, Bob, Cait, Drew and Ellie, attempted sample questions on each of the five topics and their scores are given in the table.
Topic 1Topic 2Topic 3Topic 4Topic 5
Abby2729253531
Bob3322172929
Cait2329253321
Drew2229292731
Ellie2727192127
For the actual quiz, each topic must be allocated to exactly one of the team members. The maximum total score for the sample questions is to be used to allocate the different topics to the team members.
  1. Explain why the Hungarian algorithm may be used if each number, \(x\), in the table is replaced by \(35 - x\).
  2. Form a new table by subtracting each number in the table above from 35 . Hence show that, by reducing rows first then columns, the resulting table of values is as below, stating the values of the constants \(p\) and \(q\).
    86804
    011\(p\)44
    1046012
    \(q\)2040
    00660
  3. Show that the zeros in the table in part (b) can be covered with two horizontal and two vertical lines. Hence use the Hungarian algorithm to reduce the table to a form where five lines are needed to cover the zeros.
    1. Hence find the possible allocations of topics to the five team members so that the total score for the sample questions is maximised.
    2. State the value of this maximum total score.