AQA D2 2011 January — Question 3

Exam BoardAQA
ModuleD2 (Decision Mathematics 2)
Year2011
SessionJanuary
TopicGroups

3 Two people, Rhona and Colleen, play a zero-sum game. The game is represented by the following pay-off matrix for Rhona.
\cline { 2 - 5 }Colleen
\cline { 2 - 5 } Strategy\(\mathbf { C } _ { \mathbf { 1 } }\)\(\mathbf { C } _ { \mathbf { 2 } }\)\(\mathbf { C } _ { \mathbf { 3 } }\)
\cline { 2 - 5 } Rhona\(\mathbf { R } _ { \mathbf { 1 } }\)264
\cline { 2 - 5 }\(\mathbf { R } _ { \mathbf { 2 } }\)3- 3- 1
\cline { 2 - 5 }\(\mathbf { R } _ { \mathbf { 3 } }\)\(x\)\(x + 3\)3
\cline { 2 - 5 }
\cline { 2 - 5 }
It is given that \(x < 2\).
    1. Write down the three row minima.
    2. Show that there is no stable solution.
  1. Explain why Rhona should never play strategy \(R _ { 3 }\).
    1. Find the optimal mixed strategy for Rhona.
    2. Find the value of the game.