6 A retail company has warehouses at \(P , Q\) and \(R\), and goods are to be transported to retail outlets at \(Y\) and \(Z\). There are also retaining depots at \(U , V , W\) and \(X\).
The possible routes with the capacities along each edge, in van loads per week, are shown in the following diagram.
\includegraphics[max width=\textwidth, alt={}, center]{172c5c92-4254-4593-b741-1caa83a1e833-14_673_1193_577_429}
- On Figure 5 opposite, add a super-source, \(S\), and a super-sink, \(T\), and appropriate edges so as to produce a directed network with a single source and a single sink. Indicate the capacity of each edge that you have added.
- On Figure 6, write down the maximum flows along the routes SPUYT and SRVWZT.
- On Figure 7, add the vertices \(S\) and \(T\) and the edges connecting \(S\) and \(T\) to the network. Using the maximum flows along the routes SPUYT and SRVWZT found in part (b) as the initial flow, indicate the potential increases and decreases of the flow on each edge of these routes.
- Use flow augmentation to find the maximum flow from \(S\) to \(T\). You should indicate any flow-augmenting routes on Figure 6 and modify the potential increases and decreases of the flow on Figure 7.
- Find a cut with value equal to the maximum flow.
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 5}
\includegraphics[alt={},max width=\textwidth]{172c5c92-4254-4593-b741-1caa83a1e833-15_629_1100_342_477}
\end{figure}
\begin{table}[h]
\captionsetup{labelformat=empty}
\caption{Figure 6}
\end{table}
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 7}
\includegraphics[alt={},max width=\textwidth]{172c5c92-4254-4593-b741-1caa83a1e833-15_634_1109_1838_470}
\end{figure}