8
\includegraphics[max width=\textwidth, alt={}, center]{7fe27759-d014-4bc6-8391-342d9df8280e-3_397_750_255_699}
The diagram shows the curve \(y = \mathrm { e } ^ { - \frac { 1 } { 2 } x ^ { 2 } } \sqrt { } \left( 1 + 2 x ^ { 2 } \right)\) for \(x \geqslant 0\), and its maximum point \(M\).
- Find the exact value of the \(x\)-coordinate of \(M\).
- The sequence of values given by the iterative formula
$$x _ { n + 1 } = \sqrt { } \left( \ln \left( 4 + 8 x _ { n } ^ { 2 } \right) \right) ,$$
with initial value \(x _ { 1 } = 2\), converges to a certain value \(\alpha\). State an equation satisfied by \(\alpha\) and hence show that \(\alpha\) is the \(x\)-coordinate of a point on the curve where \(y = 0.5\).
- Use the iterative formula to determine \(\alpha\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.