A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q5
CAIE P3 2012 November — Question 5
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2012
Session
November
Topic
Reciprocal Trig & Identities
5
By differentiating \(\frac { 1 } { \cos x }\), show that if \(y = \sec x\) then \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \sec x \tan x\).
Show that \(\frac { 1 } { \sec x - \tan x } \equiv \sec x + \tan x\).
Deduce that \(\frac { 1 } { ( \sec x - \tan x ) ^ { 2 } } \equiv 2 \sec ^ { 2 } x - 1 + 2 \sec x \tan x\).
Hence show that \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { 1 } { ( \sec x - \tan x ) ^ { 2 } } \mathrm {~d} x = \frac { 1 } { 4 } ( 8 \sqrt { } 2 - \pi )\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10