OCR MEI FP3 2007 June — Question 4

Exam BoardOCR MEI
ModuleFP3 (Further Pure Mathematics 3)
Year2007
SessionJune
TopicGroups

4
  1. Prove that, for a group of order 10, every proper subgroup must be cyclic. The set \(M = \{ 1,2,3,4,5,6,7,8,9,10 \}\) is a group under the binary operation of multiplication modulo 11.
  2. Show that \(M\) is cyclic.
  3. List all the proper subgroups of \(M\). The group \(P\) of symmetries of a regular pentagon consists of 10 transformations $$\{ \mathrm { A } , \mathrm {~B} , \mathrm { C } , \mathrm { D } , \mathrm { E } , \mathrm {~F} , \mathrm { G } , \mathrm { H } , \mathrm { I } , \mathrm {~J} \}$$ and the binary operation is composition of transformations. The composition table for \(P\) is given below.
    ABCDEFGHIJ
    ACJGHABIFED
    BFEHGBADCJI
    CGDIFCJEBAH
    DJCBEDGFIHA
    EABCDEFGHIJ
    FHIDCFEJABG
    GIHEBGDAJCF
    HDGJAHIBEFC
    IEFAJIHCDGB
    JBAFIJCHGDE
    One of these transformations is the identity transformation, some are rotations and the rest are reflections.
  4. Identify which transformation is the identity, which are rotations and which are reflections.
  5. State, giving a reason, whether \(P\) is isomorphic to \(M\).
  6. Find the order of each element of \(P\).
  7. List all the proper subgroups of \(P\).