OCR MEI FP3 2007 June — Question 2

Exam BoardOCR MEI
ModuleFP3 (Further Pure Mathematics 3)
Year2007
SessionJune
TopicVector Product and Surfaces

2 A surface has equation \(z = x y ^ { 2 } - 4 x ^ { 2 } y - 2 x ^ { 3 } + 27 x ^ { 2 } - 36 x + 20\).
  1. Find \(\frac { \partial z } { \partial x }\) and \(\frac { \partial z } { \partial y }\).
  2. Find the coordinates of the four stationary points on the surface, showing that one of them is \(( 2,4,8 )\).
  3. Sketch, on separate diagrams, the sections of the surface defined by \(x = 2\) and by \(y = 4\). Indicate the point \(( 2,4,8 )\) on these sections, and deduce that it is neither a maximum nor a minimum.
  4. Show that there are just two points on the surface where the normal line is parallel to the vector \(36 \mathbf { i } + \mathbf { k }\), and find the coordinates of these points.