CAIE FP1 (Further Pure Mathematics 1) 2013 November

Question 1
View details
1 The curve \(C\) has polar equation \(r = 2 \mathrm { e } ^ { \theta }\), for \(\frac { 1 } { 6 } \pi \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\). Find
  1. the area of the region bounded by the half-lines \(\theta = \frac { 1 } { 6 } \pi , \theta = \frac { 1 } { 2 } \pi\) and \(C\),
  2. the length of \(C\).
Question 2
View details
2 The cubic equation \(x ^ { 3 } - p x - q = 0\), where \(p\) and \(q\) are constants, has roots \(\alpha , \beta , \gamma\). Show that
  1. \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 2 p\),
  2. \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } = 3 q\),
  3. \(6 \left( \alpha ^ { 5 } + \beta ^ { 5 } + \gamma ^ { 5 } \right) = 5 \left( \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } \right) \left( \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } \right)\).
Question 3
View details
3 It is given that $$S _ { n } = \sum _ { r = 1 } ^ { n } u _ { r } = 2 n ^ { 2 } + n$$ Write down the values of \(S _ { 1 } , S _ { 2 } , S _ { 3 } , S _ { 4 }\). Express \(u _ { r }\) in terms of \(r\), justifying your answer. Find $$\sum _ { r = n + 1 } ^ { 2 n } u _ { r } .$$
Question 4
View details
4 It is given that $$I _ { n } = \int _ { 0 } ^ { 1 } \frac { x ^ { n } } { \sqrt { } ( 1 + 2 x ) } \mathrm { d } x$$ Show that, for \(n \geqslant 1\), $$( 2 n + 1 ) I _ { n } = \sqrt { } 3 - n I _ { n - 1 }$$ Show that $$I _ { 3 } = \frac { 2 } { 35 } ( \sqrt { } 3 + 1 )$$
Question 5
View details
5 It is given that \(y = ( 1 + x ) ^ { 2 } \ln ( 1 + x )\). Find \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\). Prove by mathematical induction that, for every integer \(n \geqslant 3\), $$\frac { \mathrm { d } ^ { n } y } { \mathrm {~d} x ^ { n } } = ( - 1 ) ^ { n - 1 } \frac { 2 ( n - 3 ) ! } { ( 1 + x ) ^ { n - 2 } }$$
Question 6
View details
6 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 1 & - 3 & - 1 & 2
4 & - 10 & 0 & 2
1 & - 1 & 3 & - 4
5 & - 12 & 1 & 1 \end{array} \right)$$ Find, in either order, the rank of \(\mathbf { M }\) and a basis for the null space \(K\) of T . Evaluate $$\mathbf { M } \left( \begin{array} { r } 1
- 2
- 3
- 4 \end{array} \right)$$ and hence show that every solution of $$\mathbf { M x } = \left( \begin{array} { r } 2
16
10
22 \end{array} \right)$$ has the form $$\mathbf { x } = \left( \begin{array} { r } 1
- 2
- 3
- 4 \end{array} \right) + \lambda \mathbf { e } _ { 1 } + \mu \mathbf { e } _ { 2 } ,$$ where \(\lambda\) and \(\mu\) are real numbers and \(\left\{ \mathbf { e } _ { 1 } , \mathbf { e } _ { 2 } \right\}\) is a basis for \(K\).
Question 7
View details
7 The square matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\) and state the corresponding eigenvalue. Find the eigenvalues of the matrix \(\mathbf { B }\), where $$\mathbf { B } = \left( \begin{array} { l l l } 1 & 3 & 0
2 & 0 & 2
1 & 1 & 2 \end{array} \right)$$ Find the eigenvalues of \(\mathbf { B } ^ { 4 } + 2 \mathbf { B } ^ { 2 } + 3 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix.
Question 8
View details
8 The plane \(\Pi _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2
3
- 1 \end{array} \right) + s \left( \begin{array} { l } 1
0
1 \end{array} \right) + t \left( \begin{array} { r } 1
- 1
- 2 \end{array} \right)\). Find a cartesian equation of \(\Pi _ { 1 }\). The plane \(\Pi _ { 2 }\) has equation \(2 x - y + z = 10\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). Find an equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }\).
Question 10
View details
10
22 \end{array} \right)$$ has the form $$\mathbf { x } = \left( \begin{array} { r } 1
- 2
- 3
- 4 \end{array} \right) + \lambda \mathbf { e } _ { 1 } + \mu \mathbf { e } _ { 2 } ,$$ where \(\lambda\) and \(\mu\) are real numbers and \(\left\{ \mathbf { e } _ { 1 } , \mathbf { e } _ { 2 } \right\}\) is a basis for \(K\). 7 The square matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\) and state the corresponding eigenvalue. Find the eigenvalues of the matrix \(\mathbf { B }\), where $$\mathbf { B } = \left( \begin{array} { l l l } 1 & 3 & 0
2 & 0 & 2
1 & 1 & 2 \end{array} \right)$$ Find the eigenvalues of \(\mathbf { B } ^ { 4 } + 2 \mathbf { B } ^ { 2 } + 3 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix. 8 The plane \(\Pi _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2
3
- 1 \end{array} \right) + s \left( \begin{array} { l } 1
0
1 \end{array} \right) + t \left( \begin{array} { r } 1
- 1
- 2 \end{array} \right)\). Find a cartesian equation of \(\Pi _ { 1 }\). The plane \(\Pi _ { 2 }\) has equation \(2 x - y + z = 10\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). Find an equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }\). 9 The curve \(C\) has parametric equations $$x = t ^ { 2 } , \quad y = t - \frac { 1 } { 3 } t ^ { 3 } , \quad \text { for } 0 \leqslant t \leqslant 1 .$$ Find the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Find the coordinates of the centroid of the region bounded by \(C\), the \(x\)-axis and the line \(x = 1\). 10 The curve \(C\) has equation $$y = \frac { p x ^ { 2 } + 4 x + 1 } { x + 1 } ,$$ where \(p\) is a positive constant and \(p \neq 3\).
  1. Obtain the equations of the asymptotes of \(C\).
  2. Find the value of \(p\) for which the \(x\)-axis is a tangent to \(C\), and sketch \(C\) in this case.
  3. For the case \(p = 1\), show that \(C\) has no turning points, and sketch \(C\), giving the exact coordinates of the points of intersection of \(C\) with the \(x\)-axis.
Question 16
View details
16
10
22 \end{array} \right)$$ has the form $$\mathbf { x } = \left( \begin{array} { r } 1
- 2
- 3
- 4 \end{array} \right) + \lambda \mathbf { e } _ { 1 } + \mu \mathbf { e } _ { 2 } ,$$ where \(\lambda\) and \(\mu\) are real numbers and \(\left\{ \mathbf { e } _ { 1 } , \mathbf { e } _ { 2 } \right\}\) is a basis for \(K\). 7 The square matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\) and state the corresponding eigenvalue. Find the eigenvalues of the matrix \(\mathbf { B }\), where $$\mathbf { B } = \left( \begin{array} { l l l } 1 & 3 & 0
2 & 0 & 2
1 & 1 & 2 \end{array} \right)$$ Find the eigenvalues of \(\mathbf { B } ^ { 4 } + 2 \mathbf { B } ^ { 2 } + 3 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix. 8 The plane \(\Pi _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2
3
- 1 \end{array} \right) + s \left( \begin{array} { l } 1
0
1 \end{array} \right) + t \left( \begin{array} { r } 1
- 1
- 2 \end{array} \right)\). Find a cartesian equation of \(\Pi _ { 1 }\). The plane \(\Pi _ { 2 }\) has equation \(2 x - y + z = 10\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). Find an equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }\). 9 The curve \(C\) has parametric equations $$x = t ^ { 2 } , \quad y = t - \frac { 1 } { 3 } t ^ { 3 } , \quad \text { for } 0 \leqslant t \leqslant 1 .$$ Find the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Find the coordinates of the centroid of the region bounded by \(C\), the \(x\)-axis and the line \(x = 1\). 10 The curve \(C\) has equation $$y = \frac { p x ^ { 2 } + 4 x + 1 } { x + 1 } ,$$ where \(p\) is a positive constant and \(p \neq 3\).
  1. Obtain the equations of the asymptotes of \(C\).
  2. Find the value of \(p\) for which the \(x\)-axis is a tangent to \(C\), and sketch \(C\) in this case.
  3. For the case \(p = 1\), show that \(C\) has no turning points, and sketch \(C\), giving the exact coordinates of the points of intersection of \(C\) with the \(x\)-axis. 11 Answer only one of the following two alternatives. \section*{EITHER} State the fifth roots of unity in the form \(\cos \theta + \mathrm { i } \sin \theta\), where \(- \pi < \theta \leqslant \pi\). Simplify $$\left( x - \left[ \cos \frac { 2 } { 5 } \pi + i \sin \frac { 2 } { 5 } \pi \right] \right) \left( x - \left[ \cos \frac { 2 } { 5 } \pi - i \sin \frac { 2 } { 5 } \pi \right] \right)$$ Hence find the real factors of $$x ^ { 5 } - 1$$ Express the six roots of the equation $$x ^ { 6 } - x ^ { 3 } + 1 = 0$$ as three conjugate pairs, in the form \(\cos \theta \pm \mathrm { i } \sin \theta\). Hence find the real factors of $$x ^ { 6 } - x ^ { 3 } + 1$$ OR Given that $$y ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 6 y ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 3 y ^ { 3 } = 25 \mathrm { e } ^ { - 2 x }$$ and that \(v = y ^ { 3 }\), show that $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } - 6 \frac { \mathrm {~d} v } { \mathrm {~d} x } + 9 v = 75 \mathrm { e } ^ { - 2 x }$$ Find the particular solution for \(y\) in terms of \(x\), given that when \(x = 0 , y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\).