CAIE P3 2009 November — Question 10

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2009
SessionNovember
TopicDifferential equations

10 In a model of the expansion of a sphere of radius \(r \mathrm {~cm}\), it is assumed that, at time \(t\) seconds after the start, the rate of increase of the surface area of the sphere is proportional to its volume. When \(t = 0\), \(r = 5\) and \(\frac { \mathrm { d } r } { \mathrm {~d} t } = 2\).
  1. Show that \(r\) satisfies the differential equation $$\frac { \mathrm { d } r } { \mathrm {~d} t } = 0.08 r ^ { 2 }$$ [The surface area \(A\) and volume \(V\) of a sphere of radius \(r\) are given by the formulae \(A = 4 \pi r ^ { 2 }\), \(V = \frac { 4 } { 3 } \pi r ^ { 3 }\).]
  2. Solve this differential equation, obtaining an expression for \(r\) in terms of \(t\).
  3. Deduce from your answer to part (ii) the set of values that \(t\) can take, according to this model.