6 With respect to the origin \(O\), the points \(A , B\) and \(C\) have position vectors given by
$$\overrightarrow { O A } = \mathbf { i } - \mathbf { k } , \quad \overrightarrow { O B } = 3 \mathbf { i } + 2 \mathbf { j } - 3 \mathbf { k } \quad \text { and } \quad \overrightarrow { O C } = 4 \mathbf { i } - 3 \mathbf { j } + 2 \mathbf { k }$$
The mid-point of \(A B\) is \(M\). The point \(N\) lies on \(A C\) between \(A\) and \(C\) and is such that \(A N = 2 N C\).
- Find a vector equation of the line \(M N\).
- It is given that \(M N\) intersects \(B C\) at the point \(P\). Find the position vector of \(P\).