A particle \(P\) moves along a straight line. The speed of \(P\) at time \(t\) seconds ( \(t \geqslant 0\) ) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), where \(v = \left( p t ^ { 2 } + q t + r \right)\) and \(p , q\) and \(r\) are constants. When \(t = 2\) the speed of \(P\) has its minimum value. When \(t = 0 , v = 11\) and when \(t = 2 , v = 3\)
Find
the acceleration of \(P\) when \(t = 3\)
the distance travelled by \(P\) in the third second of the motion.