\includegraphics[max width=\textwidth, alt={}]{28e7fb78-e2b6-4f6e-92dc-a06eb87fe1ef-5_976_1043_434_550}
The diagram shows a central cross-section \(C D E F\) of a uniform solid cube of weight \(k W\) with edges of length 4a. The cube rests on a rough horizontal floor. One of the vertical faces of the cube is parallel to a smooth vertical wall and at a distance \(5 a\) from it. A uniform ladder, of length \(10 a\) and weight \(W\), is represented by \(A B\). The ladder rests in equilibrium with \(A\) in contact with the rough top surface of the cube and \(B\) in contact with the wall. The distance \(A C\) is \(a\) and the vertical plane containing \(A B\) is perpendicular to the wall. The coefficients of friction between the ladder and the cube, and between the cube and the floor, are both equal to \(\mu\). A small dog of weight \(\frac { 1 } { 4 } W\) climbs the ladder and reaches the top without the ladder sliding or the cube turning about the edge through \(D\). Show that \(\mu \geqslant \frac { 4 } { 5 }\).
Show that the cube does not slide whatever the value of \(k\).
Find the smallest possible value of \(k\) for which equilibrium is not broken.