CAIE FP2 2019 June — Question 11 EITHER

Exam BoardCAIE
ModuleFP2 (Further Pure Mathematics 2)
Year2019
SessionJune
TopicSimple Harmonic Motion

A light spring has natural length \(a\) and modulus of elasticity \(k m g\). The spring lies on a smooth horizontal surface with one end attached to a fixed point \(O\). A particle \(P\) of mass \(m\) is attached to the other end of the spring. The system is in equilibrium with \(O P = a\). The particle is projected towards \(O\) with speed \(u\) and comes to instantaneous rest when \(O P = \frac { 3 } { 4 } a\).
  1. Use an energy method to show that \(k = \frac { 16 u ^ { 2 } } { a g }\).
  2. Show that \(P\) performs simple harmonic motion and find the period of this motion, giving your answer in terms of \(u\) and \(a\).
  3. Find, in terms of \(u\) and \(a\), the time that elapses before \(P\) first loses \(25 \%\) of its initial kinetic energy.