CAIE FP2 2019 June — Question 9

Exam BoardCAIE
ModuleFP2 (Further Pure Mathematics 2)
Year2019
SessionJune
TopicChi-squared distribution

9 A random sample of 50 observations of the continuous random variable \(X\) was taken and the values are summarised in the following table.
Interval\(0 \leqslant x < 0.8\)\(0.8 \leqslant x < 1.6\)\(1.6 \leqslant x < 2.4\)\(2.4 \leqslant x < 3.2\)\(3.2 \leqslant x < 4\)
Observed frequency1816862
It is required to test the goodness of fit of the distribution with probability density function \(f\) given by $$f ( x ) = \begin{cases} \frac { 3 } { 16 } ( 4 - x ) ^ { \frac { 1 } { 2 } } & 0 \leqslant x < 4
0 & \text { otherwise. } \end{cases}$$ The relevant expected frequencies, correct to 2 decimal places, are given in the following table.
Interval\(0 \leqslant x < 0.8\)\(0.8 \leqslant x < 1.6\)\(1.6 \leqslant x < 2.4\)\(2.4 \leqslant x < 3.2\)\(3.2 \leqslant x < 4\)
Expected frequency14.2212.5410.598.184.47
  1. Show how the expected frequency for \(1.6 \leqslant x < 2.4\) is obtained.
  2. Carry out a goodness of fit test at the \(5 \%\) significance level.