A particle \(P\), of mass \(m\), is able to move in a vertical circle on the smooth inner surface of a sphere with centre \(O\) and radius \(a\). Points \(A\) and \(B\) are on the inner surface of the sphere and \(A O B\) is a horizontal diameter. Initially, \(P\) is projected vertically downwards with speed \(\sqrt { } \left( \frac { 21 } { 2 } a g \right)\) from \(A\) and begins to move in a vertical circle. At the lowest point of its path, vertically below \(O\), the particle \(P\) collides with a stationary particle \(Q\), of mass \(4 m\), and rebounds. The speed acquired by \(Q\), as a result of the collision, is just sufficient for it to reach the point \(B\).
- Find the speed of \(P\) and the speed of \(Q\) immediately after their collision.
In its subsequent motion, \(P\) loses contact with the inner surface of the sphere at the point \(D\), where the angle between \(O D\) and the upward vertical through \(O\) is \(\theta\). - Find \(\cos \theta\).