| Exam Board | CAIE |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2014 |
| Session | June |
| Topic | Simple Harmonic Motion |
2 The point \(O\) is on the fixed line \(l\). Points \(A\) and \(B\) on \(l\) are such that \(O A = 0.5 \mathrm {~m}\) and \(O B = 0.75 \mathrm {~m}\), with \(A\) between \(O\) and \(B\). A particle \(P\) of mass \(m\) oscillates on \(l\) in simple harmonic motion with centre \(O\). The ratio of the kinetic energy of \(P\) when it is at \(A\) to its kinetic energy when it is at \(B\) is \(12 : 11\). Find the amplitude of the motion.
Given that the greatest speed of \(P\) is \(0.6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), find the time taken by \(P\) to travel directly from \(A\) to \(B\).