CAIE P3 2003 November — Question 10

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2003
SessionNovember
TopicVectors: Lines & Planes

10 The lines \(l\) and \(m\) have vector equations $$\mathbf { r } = \mathbf { i } - 2 \mathbf { k } + s ( 2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 6 \mathbf { i } - 5 \mathbf { j } + 4 \mathbf { k } + t ( \mathbf { i } - 2 \mathbf { j } + \mathbf { k } )$$ respectively.
  1. Show that \(l\) and \(m\) intersect, and find the position vector of their point of intersection.
  2. Find the equation of the plane containing \(l\) and \(m\), giving your answer in the form \(a x + b y + c z = d\).