CAIE P3 2003 November — Question 5

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2003
SessionNovember
TopicFixed Point Iteration

5
  1. By sketching suitable graphs, show that the equation $$\sec x = 3 - x ^ { 2 }$$ has exactly one root in the interval \(0 < x < \frac { 1 } { 2 } \pi\).
  2. Show that, if a sequence of values given by the iterative formula $$x _ { n + 1 } = \cos ^ { - 1 } \left( \frac { 1 } { 3 - x _ { n } ^ { 2 } } \right)$$ converges, then it converges to a root of the equation given in part (i).
  3. Use this iterative formula, with initial value \(x _ { 1 } = 1\), to determine the root in the interval \(0 < x < \frac { 1 } { 2 } \pi\) correct to 2 decimal places, showing the result of each iteration.