CAIE FP1 (Further Pure Mathematics 1) 2016 November

Question 1
View details
1 Use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 2 r ) ^ { 2 } - 1 }\). Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( 2 r ) ^ { 2 } - 1 }\).
Question 2
View details
2 Find the cubic equation with roots \(\alpha , \beta\) and \(\gamma\) such that $$\begin{aligned} \alpha + \beta + \gamma & = 3
\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 1
\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } & = - 30 \end{aligned}$$ giving your answer in the form \(x ^ { 3 } + p x ^ { 2 } + q x + r = 0\), where \(p , q\) and \(r\) are integers to be found.
Question 3
View details
3 Find a matrix \(\mathbf { A }\) whose eigenvalues are \(- 1,1,2\) and for which corresponding eigenvectors are $$\left( \begin{array} { l } 1
0
0 \end{array} \right) , \quad \left( \begin{array} { l } 1
1
0 \end{array} \right) , \quad \left( \begin{array} { l } 0
1
1 \end{array} \right) ,$$ respectively.
Question 4
View details
4 Using factorials, show that \(\binom { n } { r - 1 } + \binom { n } { r } = \binom { n + 1 } { r }\). Hence prove by mathematical induction that $$( a + x ) ^ { n } = \binom { n } { 0 } a ^ { n } + \binom { n } { 1 } a ^ { n - 1 } x + \ldots + \binom { n } { r } a ^ { n - r } x ^ { r } + \ldots + \binom { n } { n } x ^ { n }$$ for every positive integer \(n\).
Question 5
View details
5 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r r } 1 & 3 & 5 & 7
2 & 8 & 7 & 9
3 & 13 & 9 & 11
6 & 24 & 21 & 27 \end{array} \right)$$ Find
  1. the rank of \(\mathbf { A }\),
  2. a basis for the range space of T ,
  3. a basis for the null space of T .
Question 6
View details
6 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 7 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 10 x = 116 \sin 2 t$$ State an approximate solution for large positive values of \(t\).
Question 7
View details
7 The curve \(C\) has equation \(y = \mathrm { e } ^ { - 2 x }\). Find, giving your answers correct to 3 significant figures,
  1. the mean value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) over the interval \(0 \leqslant x \leqslant 2\),
  2. the coordinates of the centroid of the region bounded by \(C\), \(x = 0\), \(x = 2\) and \(y = 0\).
Question 8
View details
8 A curve \(C\) has equation \(x ^ { 2 } + 4 x y - y ^ { 2 } + 20 = 0\). Show that, at stationary points on \(C , x = - 2 y\). Find the coordinates of the stationary points on \(C\), and determine their nature by considering the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the stationary points.
Question 9
View details
9 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x \sin x \mathrm {~d} x\). Given that \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x ^ { n } \sin x \mathrm {~d} x\), prove that, for \(n > 1\), $$I _ { n } = n \left( \frac { 1 } { 2 } \pi \right) ^ { n - 1 } - n ( n - 1 ) I _ { n - 2 }$$ By first using the substitution \(x = \cos ^ { - 1 } u\), find the value of $$\int _ { 0 } ^ { 1 } \left( \cos ^ { - 1 } u \right) ^ { 3 } \mathrm {~d} u$$ giving your answer in an exact form.
Question 10
View details
10 Let \(z = \cos \theta + \mathrm { i } \sin \theta\). Show that $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta \quad \text { and } \quad z ^ { n } - \frac { 1 } { z ^ { n } } = 2 \mathrm { i } \sin n \theta$$ By considering \(\left( z - \frac { 1 } { z } \right) ^ { 4 } \left( z + \frac { 1 } { z } \right) ^ { 2 }\), show that $$\sin ^ { 4 } \theta \cos ^ { 2 } \theta = \frac { 1 } { 32 } ( \cos 6 \theta - 2 \cos 4 \theta - \cos 2 \theta + 2 ) .$$ Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sin ^ { 4 } \theta \cos ^ { 2 } \theta d \theta\).
[0pt] [Question 11 is printed on the next page.]
Question 11 EITHER
View details
The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations $$\mathbf { r } = 6 \mathbf { i } - 3 \mathbf { j } + s ( 3 \mathbf { i } - 4 \mathbf { j } - 2 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 2 \mathbf { i } - \mathbf { j } - 4 \mathbf { k } + t ( \mathbf { i } - 3 \mathbf { j } - \mathbf { k } )$$ respectively. The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). Show that the position vector of \(P\) is \(3 \mathbf { i } + \mathbf { j } + 2 \mathbf { k }\) and find the position vector of \(Q\). Find, in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b } + \mu \mathbf { c }\), an equation of the plane \(\Pi\) which passes through \(P\) and is perpendicular to \(l _ { 1 }\). The plane \(\Pi\) meets the plane \(\mathbf { r } = p \mathbf { i } + q \mathbf { j }\) in the line \(l _ { 3 }\). Find a vector equation of \(l _ { 3 }\).
Question 11 OR
View details
A curve \(C\) has parametric equations $$x = 1 - 3 t ^ { 2 } , \quad y = t \left( 1 - 3 t ^ { 2 } \right) , \quad \text { for } 0 \leqslant t \leqslant \frac { 1 } { \sqrt { 3 } }$$ Show that \(\left( \frac { \mathrm { d } x } { \mathrm {~d} t } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} t } \right) ^ { 2 } = \left( 1 + 9 t ^ { 2 } \right) ^ { 2 }\). Hence find
  1. the arc length of \(C\),
  2. the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Use the fact that \(t = \frac { y } { x }\) to find a cartesian equation of \(C\). Hence show that the polar equation of \(C\) is \(r = \sec \theta \left( 1 - 3 \tan ^ { 2 } \theta \right)\), and state the domain of \(\theta\). Find the area of the region enclosed between \(C\) and the initial line. \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at \href{http://www.cie.org.uk}{www.cie.org.uk} after the live examination series. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }