3 Let \(f ( \theta ) = \frac { 1 - \cos 2 \theta + \sin 2 \theta } { 1 + \cos 2 \theta + \sin 2 \theta }\).
- Show that \(\mathrm { f } ( \theta ) = \tan \theta\).
- Hence show that \(\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 4 } \pi } \mathrm { f } ( \theta ) \mathrm { d } \theta = \frac { 1 } { 2 } \ln \frac { 3 } { 2 }\).