CAIE P3 (Pure Mathematics 3) 2019 June

Question 1
View details
1 Use logarithms to solve the equation \(5 ^ { 3 - 2 x } = 4 \left( 7 ^ { x } \right)\), giving your answer correct to 3 decimal places.
Question 2
View details
2 Show that \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } x ^ { 2 } \cos 2 x \mathrm {~d} x = \frac { 1 } { 32 } \left( \pi ^ { 2 } - 8 \right)\).
Question 3
View details
3 Let \(f ( \theta ) = \frac { 1 - \cos 2 \theta + \sin 2 \theta } { 1 + \cos 2 \theta + \sin 2 \theta }\).
  1. Show that \(\mathrm { f } ( \theta ) = \tan \theta\).
  2. Hence show that \(\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 4 } \pi } \mathrm { f } ( \theta ) \mathrm { d } \theta = \frac { 1 } { 2 } \ln \frac { 3 } { 2 }\).
Question 4
View details
4 The equation of a curve is \(y = \frac { 1 + \mathrm { e } ^ { - x } } { 1 - \mathrm { e } ^ { - x } }\), for \(x > 0\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) is always negative.
  2. The gradient of the curve is equal to - 1 when \(x = a\). Show that \(a\) satisfies the equation \(\mathrm { e } ^ { 2 a } - 4 \mathrm { e } ^ { a } + 1 = 0\). Hence find the exact value of \(a\).
Question 5
View details
5 The variables \(x\) and \(y\) satisfy the differential equation $$( x + 1 ) y \frac { \mathrm {~d} y } { \mathrm {~d} x } = y ^ { 2 } + 5$$ It is given that \(y = 2\) when \(x = 0\). Solve the differential equation obtaining an expression for \(y ^ { 2 }\) in terms of \(x\).
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{87392b1c-3683-45b4-8d55-36760b5f0cc1-10_547_531_260_806} The diagram shows the curve \(y = x ^ { 4 } - 2 x ^ { 3 } - 7 x - 6\). The curve intersects the \(x\)-axis at the points \(( a , 0 )\) and \(( b , 0 )\), where \(a < b\). It is given that \(b\) is an integer.
  1. Find the value of \(b\).
  2. Hence show that \(a\) satisfies the equation \(a = - \frac { 1 } { 3 } \left( 2 + a ^ { 2 } + a ^ { 3 } \right)\).
  3. Use an iterative formula based on the equation in part (ii) to determine \(a\) correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
Question 7
View details
7 The curve \(y = \sin \left( x + \frac { 1 } { 3 } \pi \right) \cos x\) has two stationary points in the interval \(0 \leqslant x \leqslant \pi\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. By considering the formula for \(\cos ( A + B )\), show that, at the stationary points on the curve, \(\cos \left( 2 x + \frac { 1 } { 3 } \pi \right) = 0\).
  3. Hence find the exact \(x\)-coordinates of the stationary points.
Question 8
View details
8 Throughout this question the use of a calculator is not permitted.
The complex number \(u\) is defined by $$u = \frac { 4 \mathrm { i } } { 1 - ( \sqrt { } 3 ) \mathrm { i } }$$
  1. Express \(u\) in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real and exact.
  2. Find the exact modulus and argument of \(u\).
  3. On a sketch of an Argand diagram, shade the region whose points represent complex numbers \(z\) satisfying the inequalities \(| z | < 2\) and \(| z - u | < | z |\).
Question 9
View details
9 Let \(\mathrm { f } ( x ) = \frac { 2 x ( 5 - x ) } { ( 3 + x ) ( 1 - x ) ^ { 2 } }\).
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Hence obtain the expansion of \(\mathrm { f } ( x )\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\).
Question 10
View details
10 The line \(l\) has equation \(\mathbf { r } = \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } + \mu ( 2 \mathbf { i } - \mathbf { j } - 2 \mathbf { k } )\).
  1. The point \(P\) has position vector \(4 \mathbf { i } + 2 \mathbf { j } - 3 \mathbf { k }\). Find the length of the perpendicular from \(P\) to \(l\).
  2. It is given that \(l\) lies in the plane with equation \(a x + b y + 2 z = 13\), where \(a\) and \(b\) are constants. Find the values of \(a\) and \(b\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.