CAIE FP1 (Further Pure Mathematics 1) 2017 June

Question 1
View details
1 It is given that \(\sum _ { r = 1 } ^ { n } u _ { r } = n ^ { 2 } ( 2 n + 3 )\), where \(n\) is a positive integer.
  1. Find \(\sum _ { r = n + 1 } ^ { 2 n } u _ { r }\).
  2. Find \(u _ { r }\).
Question 2
View details
2 Prove, by mathematical induction, that \(5 ^ { n } + 3\) is divisible by 4 for all non-negative integers \(n\).
Question 3
View details
3 A curve \(C\) has equation \(\tan y = x\), for \(x > 0\).
  1. Use implicit differentiation to show that $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - 2 x \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 }$$
  2. Hence find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(\left( 1 , \frac { 1 } { 4 } \pi \right)\) on \(C\).
Question 4
View details
4
  1. Find the value of \(k\) for which the set of linear equations $$\begin{aligned} x + 3 y + k z & = 4
    4 x - 2 y - 10 z & = - 5
    x + y + 2 z & = 1 \end{aligned}$$ has no unique solution.
  2. For this value of \(k\), find the set of possible solutions, giving your answer in the form $$\left( \begin{array} { c } x
    y
    z \end{array} \right) = \mathbf { a } + t \mathbf { b } ,$$ where \(\mathbf { a }\) and \(\mathbf { b }\) are vectors and \(t\) is a scalar.
Question 5
View details
5 The matrix \(\mathbf { A }\), given by $$\mathbf { A } = \left( \begin{array} { l l l } 1 & 2 & - 2
6 & 4 & - 6
6 & 5 & - 7 \end{array} \right)$$ has eigenvalues \(1 , - 1\) and - 2 .
  1. Find a set of corresponding eigenvectors.
  2. The matrix \(\mathbf { B }\) is given by \(\mathbf { B } = \mathbf { A } - 2 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix. Write down the eigenvalues of \(\mathbf { B }\), and state a set of corresponding eigenvectors.
Question 6
View details
6 Let \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x ^ { n } \sin x \mathrm {~d} x\).
  1. Prove that, for \(n \geqslant 2\), $$I _ { n } + n ( n - 1 ) I _ { n - 2 } = n \left( \frac { 1 } { 2 } \pi \right) ^ { n - 1 } .$$
  2. Calculate the exact value of \(I _ { 1 }\) and deduce the exact value of \(I _ { 3 }\).
Question 7
View details
7 By finding a cubic equation whose roots are \(\alpha , \beta\) and \(\gamma\), solve the set of simultaneous equations $$\begin{aligned} \alpha + \beta + \gamma & = - 1 ,
\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 29 ,
\frac { 1 } { \alpha } + \frac { 1 } { \beta } + \frac { 1 } { \gamma } & = - 1 . \end{aligned}$$
Question 8
View details
8
  1. Let \(z = \cos \theta + \mathrm { i } \sin \theta\). Show that \(z - \frac { 1 } { z } = 2 \mathrm { i } \sin \theta\) and hence express \(16 \sin ^ { 5 } \theta\) in the form \(\sin 5 \theta + p \sin 3 \theta + q \sin \theta\), where \(p\) and \(q\) are integers to be determined.
  2. Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } 16 \sin ^ { 5 } \theta \mathrm {~d} \theta\).
Question 9
View details
9 The curve \(C\) has equation \(y = \frac { x ^ { 2 } - 3 x + 6 } { 1 - x }\).
  1. Find the equations of the asymptotes of \(C\).
  2. Find the coordinates of the turning points of \(C\).
  3. Find the coordinates of any intersections with the coordinate axes.
  4. Sketch \(C\).
Question 10
View details
10 It is given that \(x = t ^ { \frac { 1 } { 2 } }\), where \(x > 0\) and \(t > 0\), and \(y\) is a function of \(x\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 t ^ { \frac { 1 } { 2 } } \frac { \mathrm {~d} y } { \mathrm {~d} t }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 2 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 4 t \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} t ^ { 2 } }\).
  2. Hence show that the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \left( 8 x + \frac { 1 } { x } \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + 12 x ^ { 2 } y = 4 x ^ { 2 } \mathrm { e } ^ { - x ^ { 2 } }$$ reduces to the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 4 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 3 y = \mathrm { e } ^ { - t }$$
  3. Find the general solution of ( \(*\) ), giving \(y\) in terms of \(x\).
Question 11
View details
11 The curve \(C\) has polar equation \(r = a ( 1 + \sin \theta )\) for \(- \pi < \theta \leqslant \pi\), where \(a\) is a positive constant.
  1. Sketch \(C\).
  2. Find the area of the region enclosed by \(C\).
  3. Show that the length of the arc of \(C\) from the pole to the point furthest from the pole is given by $$s = ( \sqrt { } 2 ) a \int _ { - \frac { 1 } { 2 } \pi } ^ { \frac { 1 } { 2 } \pi } \sqrt { } ( 1 + \sin \theta ) \mathrm { d } \theta$$
  4. Show that the substitution \(u = 1 + \sin \theta\) reduces this integral for \(s\) to \(( \sqrt { } 2 ) a \int _ { 0 } ^ { 2 } \frac { 1 } { \sqrt { } ( 2 - u ) } \mathrm { d } u\). Hence evaluate \(s\).
Question 12 EITHER
View details
The curve \(C\) has equation \(y = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right)\) for \(0 \leqslant x \leqslant 4\).
  1. The region \(R\) is bounded by \(C\), the \(x\)-axis, the \(y\)-axis and the line \(x = 4\). Find, in terms of e, the coordinates of the centroid of the region \(R\).
  2. Show that \(\frac { \mathrm { d } s } { \mathrm {~d} x } = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right)\), where \(s\) denotes the arc length of \(C\), and find the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
Question 12 OR
View details
The position vectors of the points \(A , B , C , D\) are $$\mathbf { i } + \mathbf { j } + 3 \mathbf { k } , \quad 3 \mathbf { i } - \mathbf { j } + 5 \mathbf { k } , \quad 3 \mathbf { i } - \mathbf { j } + \mathbf { k } , \quad 5 \mathbf { i } - 5 \mathbf { j } + \alpha \mathbf { k } ,$$ respectively, where \(\alpha\) is a positive integer. It is given that the shortest distance between the line \(A B\) and the line \(C D\) is equal to \(2 \sqrt { } 2\).
  1. Show that the possible values of \(\alpha\) are 3 and 5 .
  2. Using \(\alpha = 3\), find the shortest distance of the point \(D\) from the line \(A C\), giving your answer correct to 3 significant figures.
  3. Using \(\alpha = 3\), find the acute angle between the planes \(A B C\) and \(A B D\), giving your answer in degrees.
    \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
    To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at \href{http://www.cie.org.uk}{www.cie.org.uk} after the live examination series. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }