CAIE FP1 (Further Pure Mathematics 1) 2013 June

Question 1
View details
1 Find the area of the region enclosed by the curve with polar equation \(r = 2 ( 1 + \cos \theta )\), for \(0 \leqslant \theta < 2 \pi\).
Question 2
View details
2 Prove by mathematical induction that \(5 ^ { 2 n } - 1\) is divisible by 8 for every positive integer \(n\).
Question 3
View details
3 The cubic equation \(x ^ { 3 } - 2 x ^ { 2 } - 3 x + 4 = 0\) has roots \(\alpha , \beta , \gamma\). Given that \(c = \alpha + \beta + \gamma\), state the value of \(c\). Use the substitution \(y = c - x\) to find a cubic equation whose roots are \(\alpha + \beta , \beta + \gamma , \gamma + \alpha\). Find a cubic equation whose roots are \(\frac { 1 } { \alpha + \beta } , \frac { 1 } { \beta + \gamma } , \frac { 1 } { \gamma + \alpha }\). Hence evaluate \(\frac { 1 } { ( \alpha + \beta ) ^ { 2 } } + \frac { 1 } { ( \beta + \gamma ) ^ { 2 } } + \frac { 1 } { ( \gamma + \alpha ) ^ { 2 } }\).
Question 4
View details
4 Let \(I _ { n } = \int _ { 0 } ^ { 1 } \frac { 1 } { \left( 1 + x ^ { 2 } \right) ^ { n } } \mathrm {~d} x\). Prove that, for every positive integer \(n\), $$2 n I _ { n + 1 } = 2 ^ { - n } + ( 2 n - 1 ) I _ { n }$$ Given that \(I _ { 1 } = \frac { 1 } { 4 } \pi\), find the exact value of \(I _ { 3 }\).
Question 5
View details
5 Use the method of differences to show that \(\sum _ { r = 1 } ^ { N } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) } = \frac { 1 } { 6 } - \frac { 1 } { 2 ( 2 N + 3 ) }\). Deduce that \(\sum _ { r = N + 1 } ^ { 2 N } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) } < \frac { 1 } { 8 N }\).
Question 6
View details
6 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { l l l } 4 & - 5 & 3
3 & - 4 & 3
1 & - 1 & 2 \end{array} \right)$$ Show that \(\mathbf { e } = \left( \begin{array} { l } 1
1
1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\) and state the corresponding eigenvalue. Find the other two eigenvalues of \(\mathbf { A }\). The matrix \(\mathbf { B }\) is given by $$\mathbf { B } = \left( \begin{array} { r r r } - 1 & 4 & 0
- 1 & 3 & 1
1 & - 1 & 3 \end{array} \right)$$ Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { B }\) and deduce an eigenvector of the matrix \(\mathbf { A B }\), stating the corresponding eigenvalue.
Question 7
View details
7 By considering the binomial expansion of \(\left( z - \frac { 1 } { z } \right) ^ { 6 }\), where \(z = \cos \theta + \mathrm { i } \sin \theta\), express \(\sin ^ { 6 } \theta\) in the form $$\frac { 1 } { 32 } ( p + q \cos 2 \theta + r \cos 4 \theta + s \cos 6 \theta ) ,$$ where \(p , q , r\) and \(s\) are integers to be determined. Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sin ^ { 6 } \theta \mathrm {~d} \theta\).
Question 8
View details
8 The linear transformations \(\mathrm { T } _ { 1 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) and \(\mathrm { T } _ { 2 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) are represented by the matrices \(\mathbf { M } _ { 1 }\) and \(\mathbf { M } _ { 2 }\) respectively, where $$\mathbf { M } _ { 1 } = \left( \begin{array} { r r r r } 1 & - 2 & 3 & 5
3 & - 4 & 17 & 33
5 & - 9 & 20 & 36
4 & - 7 & 16 & 29 \end{array} \right) \quad \text { and } \quad \mathbf { M } _ { 2 } = \left( \begin{array} { r r r r } 1 & - 2 & 0 & - 3
2 & - 1 & 0 & 0
4 & - 7 & 1 & - 9
6 & - 10 & 0 & - 14 \end{array} \right) .$$ The null spaces of \(\mathrm { T } _ { 1 }\) and \(\mathrm { T } _ { 2 }\) are denoted by \(K _ { 1 }\) and \(K _ { 2 }\) respectively. Find a basis for \(K _ { 1 }\) and a basis for \(K _ { 2 }\). It is given that \(\mathbf { a } = \left( \begin{array} { l } 1
2
3
4 \end{array} \right)\). The vectors \(\mathbf { x } _ { 1 }\) and \(\mathbf { x } _ { 2 }\) are such that \(\mathbf { M } _ { 1 } \mathbf { x } _ { 1 } = \mathbf { M } _ { 1 } \mathbf { a }\) and \(\mathbf { M } _ { 2 } \mathbf { x } _ { 2 } = \mathbf { M } _ { 2 } \mathbf { a }\). Given that \(\mathbf { x } _ { 1 } - \mathbf { x } _ { 2 } = \left( \begin{array} { c } p
5
7
q \end{array} \right)\), find \(p\) and \(q\).
Question 9
View details
9 Find \(x\) in terms of \(t\) given that $$4 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} x } { \mathrm {~d} t } + x = 6 \mathrm { e } ^ { - 2 t }$$ and that, when \(t = 0 , x = \frac { 5 } { 3 }\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { 7 } { 6 }\). State \(\lim _ { t \rightarrow \infty } x\).
Question 10
View details
10 The curve \(C\) has equation \(y = \frac { 2 x ^ { 2 } - 3 x - 2 } { x ^ { 2 } - 2 x + 1 }\). State the equations of the asymptotes of \(C\). Show that \(y \leqslant \frac { 25 } { 12 }\) at all points of \(C\). Find the coordinates of any stationary points of \(C\). Sketch \(C\), stating the coordinates of any intersections of \(C\) with the coordinate axes and the asymptotes.
Question 11 EITHER
View details
The curve \(C\) has equation \(y = 2 \sec x\), for \(0 \leqslant x \leqslant \frac { 1 } { 4 } \pi\). Show that the arc length \(s\) of \(C\) is given by $$S = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \left( 2 \sec ^ { 2 } x - 1 \right) d x$$ Find the exact value of \(s\). The surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis is denoted by \(S\). Show that
  1. \(S = 4 \pi \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \left( 2 \sec ^ { 3 } x - \sec x \right) \mathrm { d } x\),
  2. \(\frac { \mathrm { d } } { \mathrm { d } x } ( \sec x \tan x ) = 2 \sec ^ { 3 } x - \sec x\). Hence find the exact value of \(S\).
Question 11 OR
View details
The points \(A , B , C\) and \(D\) have coordinates as follows: $$A ( 2,1 , - 2 ) , \quad B ( 4,1 , - 1 ) , \quad C ( 3 , - 2 , - 1 ) \quad \text { and } \quad D ( 3,6,2 ) .$$ The plane \(\Pi _ { 1 }\) passes through the points \(A , B\) and \(C\). Find a cartesian equation of \(\Pi _ { 1 }\). Find the area of triangle \(A B C\) and hence, or otherwise, find the volume of the tetrahedron \(A B C D\).
[0pt] [The volume of a tetrahedron is \(\frac { 1 } { 3 } \times\) area of base × perpendicular height.]
The plane \(\Pi _ { 2 }\) passes through the points \(A , B\) and \(D\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }