CAIE FP1 (Further Pure Mathematics 1) 2012 June

Question 1
View details
1 The roots of the cubic equation \(x ^ { 3 } - 7 x ^ { 2 } + 2 x - 3 = 0\) are \(\alpha , \beta , \gamma\). Find the values of
  1. \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\),
  2. \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 }\).
Question 2
View details
2 Prove, by mathematical induction, that, for integers \(n \geqslant 2\), $$4 ^ { n } > 2 ^ { n } + 3 ^ { n }$$
Question 3
View details
3 Given that \(\mathrm { f } ( r ) = \frac { 1 } { ( r + 1 ) ( r + 2 ) }\), show that $$\mathrm { f } ( r - 1 ) - \mathrm { f } ( r ) = \frac { 2 } { r ( r + 1 ) ( r + 2 ) }$$ Hence find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { r ( r + 1 ) ( r + 2 ) }\). Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { r ( r + 1 ) ( r + 2 ) }\).
Question 4
View details
4 The curve \(C\) has polar equation \(r = 2 + 2 \cos \theta\), for \(0 \leqslant \theta \leqslant \pi\). Sketch the graph of \(C\). Find the area of the region \(R\) enclosed by \(C\) and the initial line. The half-line \(\theta = \frac { 1 } { 5 } \pi\) divides \(R\) into two parts. Find the area of each part, correct to 3 decimal places.
Question 5
View details
5 A matrix \(\mathbf { A }\) has eigenvalues \(- 1,1\) and 2 , with corresponding eigenvectors $$\left( \begin{array} { r } 0
1
- 2 \end{array} \right) , \quad \left( \begin{array} { r } - 1
- 1
3 \end{array} \right) \quad \text { and } \quad \left( \begin{array} { r } 2
- 3
5 \end{array} \right) ,$$ respectively. Find \(\mathbf { A }\).
Question 6
View details
6 Write down the values of \(\theta\), in the interval \(0 \leqslant \theta < 2 \pi\), for which \(\cos \theta + \mathrm { i } \sin \theta\) is a fifth root of unity. By writing the equation \(( z + 1 ) ^ { 5 } = z ^ { 5 }\) in the form $$\left( \frac { z + 1 } { z } \right) ^ { 5 } = 1$$ show that its roots are $$- \frac { 1 } { 2 } \left\{ 1 + \mathrm { i } \cot \left( \frac { k \pi } { 5 } \right) \right\} , \quad k = 1,2,3,4$$
Question 7
View details
7 The linear transformations \(\mathrm { T } _ { 1 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) and \(\mathrm { T } _ { 2 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) are represented by the matrices $$\mathbf { M } _ { 1 } = \left( \begin{array} { r r r r } 1 & 1 & 1 & 4
2 & 1 & 4 & 11
3 & 4 & 1 & 9
4 & - 3 & 18 & 37 \end{array} \right) \quad \text { and } \quad \mathbf { M } _ { 2 } = \left( \begin{array} { r r r r } 1 & 1 & 1 & - 1
2 & 3 & 0 & 1
3 & 4 & 1 & 0
4 & 5 & 2 & 0 \end{array} \right)$$ respectively. The null space of \(\mathrm { T } _ { 1 }\) is denoted by \(K _ { 1 }\) and the null space of \(\mathrm { T } _ { 2 }\) is denoted by \(K _ { 2 }\). Show that the dimension of \(K _ { 1 }\) is 2 and that the dimension of \(K _ { 2 }\) is 1 . Find the basis of \(K _ { 1 }\) which has the form \(\left\{ \left( \begin{array} { c } p
q
1
0 \end{array} \right) , \left( \begin{array} { c } r
s
0
1 \end{array} \right) \right\}\) and show that \(K _ { 2 }\) is a subspace of \(K _ { 1 }\).
Question 8
View details
8 Find the particular solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 5 y = 10 \mathrm { e } ^ { - 2 x }$$ given that \(y = 5\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) when \(x = 0\).
Question 9
View details
9 The curve \(C\) has equation $$y = \frac { 2 x ^ { 2 } + 2 x + 3 } { x ^ { 2 } + 2 }$$ Show that, for all \(x , 1 \leqslant y \leqslant \frac { 5 } { 2 }\). Find the coordinates of the turning points on \(C\). Find the equation of the asymptote of \(C\). Sketch the graph of \(C\), stating the coordinates of any intersections with the \(y\)-axis and the asymptote.
Question 10
View details
10 The curve \(C\) has equation $$y = 2 \left( \frac { x } { 3 } \right) ^ { \frac { 3 } { 2 } }$$ where \(0 \leqslant x \leqslant 3\). Show that the arc length of \(C\) is \(2 ( 2 \sqrt { 2 } - 1 )\). Find the coordinates of the centroid of the region enclosed by \(C\), the \(x\)-axis and the line \(x = 3\).
Question 11 EITHER
View details
Show that $$\int _ { 0 } ^ { \pi } \mathrm { e } ^ { x } \sin x \mathrm {~d} x = \frac { 1 + \mathrm { e } ^ { \pi } } { 2 }$$ Given that $$I _ { n } = \int _ { 0 } ^ { \pi } \mathrm { e } ^ { x } \sin ^ { n } x \mathrm {~d} x$$ show that, for \(n \geqslant 2\), $$I _ { n } = n ( n - 1 ) \int _ { 0 } ^ { \pi } \mathrm { e } ^ { x } \cos ^ { 2 } x \sin ^ { n - 2 } x \mathrm {~d} x - n I _ { n }$$ and deduce that $$\left( n ^ { 2 } + 1 \right) I _ { n } = n ( n - 1 ) I _ { n - 2 } .$$ A curve has equation \(y = \mathrm { e } ^ { x } \sin ^ { 5 } x\). Find, in an exact form, the mean value of \(y\) over the interval \(0 \leqslant x \leqslant \pi\).
Question 11 OR
View details
The position vectors of the points \(A , B , C , D\) are $$2 \mathbf { i } + 4 \mathbf { j } - 3 \mathbf { k } , \quad - 2 \mathbf { i } + 5 \mathbf { j } - 4 \mathbf { k } , \quad \mathbf { i } + 4 \mathbf { j } + \mathbf { k } , \quad \mathbf { i } + 5 \mathbf { j } + m \mathbf { k }$$ respectively, where \(m\) is an integer. It is given that the shortest distance between the line through \(A\) and \(B\) and the line through \(C\) and \(D\) is 3 . Show that the only possible value of \(m\) is 2 . Find the shortest distance of \(D\) from the line through \(A\) and \(C\). Show that the acute angle between the planes \(A C D\) and \(B C D\) is \(\cos ^ { - 1 } \left( \frac { 1 } { \sqrt { } 3 } \right)\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }