CAIE FP1 (Further Pure Mathematics 1) 2009 June

Question 1
View details
1 The equation $$x ^ { 4 } - x ^ { 3 } - 1 = 0$$ has roots \(\alpha , \beta , \gamma , \delta\). By using the substitution \(y = x ^ { 3 }\), or by any other method, find the exact value of \(\alpha ^ { 6 } + \beta ^ { 6 } + \gamma ^ { 6 } + \delta ^ { 6 }\).
Question 2
View details
2 Verify that, for all positive values of \(n\), $$\frac { 1 } { ( n + 2 ) ( 2 n + 3 ) } - \frac { 1 } { ( n + 3 ) ( 2 n + 5 ) } = \frac { 4 n + 9 } { ( n + 2 ) ( n + 3 ) ( 2 n + 3 ) ( 2 n + 5 ) } .$$ For the series $$\sum _ { n = 1 } ^ { N } \frac { 4 n + 9 } { ( n + 2 ) ( n + 3 ) ( 2 n + 3 ) ( 2 n + 5 ) }$$ find
  1. the sum to \(N\) terms,
  2. the sum to infinity.
Question 3
View details
3 The equation of a curve is \(y = \lambda x ^ { 2 }\), where \(\lambda > 0\). The region bounded by the curve, the \(x\)-axis and the line \(x = a\), where \(a > 0\), is denoted by \(R\). The \(y\)-coordinate of the centroid of \(R\) is \(a\). Show that \(\lambda = \frac { 10 } { 3 a }\).
Question 4
View details
4 A curve has equation $$y = \frac { 1 } { 3 } x ^ { 3 } + 1$$ The length of the arc of the curve joining the point where \(x = 0\) to the point where \(x = 1\) is denoted by \(s\). Show that $$s = \int _ { 0 } ^ { 1 } \sqrt { } \left( 1 + x ^ { 4 } \right) \mathrm { d } x$$ The surface area generated when this arc is rotated through one complete revolution about the \(x\)-axis is denoted by \(S\). Show that $$S = \frac { 1 } { 9 } \pi ( 18 s + 2 \sqrt { } 2 - 1 )$$ [Do not attempt to evaluate \(s\) or \(S\).]
Question 5
View details
5 Draw a sketch of the curve \(C\) whose polar equation is \(r = \theta\), for \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\). On the same diagram draw the line \(\theta = \alpha\), where \(0 < \alpha < \frac { 1 } { 2 } \pi\). The region bounded by \(C\) and the line \(\theta = \frac { 1 } { 2 } \pi\) is denoted by \(R\). Find the exact value of \(\alpha\) for which the line \(\theta = \alpha\) divides \(R\) into two regions of equal area.
Question 6
View details
6 A curve has equation $$( x + y ) \left( x ^ { 2 } + y ^ { 2 } \right) = 1$$ Find the values of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(( 0,1 )\).
Question 7
View details
7 Let $$I _ { n } = \int _ { 0 } ^ { 1 } t ^ { n } \mathrm { e } ^ { - t } \mathrm {~d} t$$ where \(n \geqslant 0\). Show that, for all \(n \geqslant 1\), $$I _ { n } = n I _ { n - 1 } - \mathrm { e } ^ { - 1 }$$ Hence prove by induction that, for all positive integers \(n\), $$I _ { n } < n ! .$$
Question 8
View details
8 Find the general solution of the differential equation $$4 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 65 y = 65 x ^ { 2 } + 8 x + 73$$ Show that, whatever the initial conditions, \(\frac { y } { x ^ { 2 } } \rightarrow 1\) as \(x \rightarrow \infty\).
Question 9
View details
9 The matrix $$\mathbf { A } = \left( \begin{array} { r r r } 3 & 1 & 4
1 & 5 & - 1
2 & 1 & 5 \end{array} \right)$$ has eigenvalues \(1,5,7\). Find a set of corresponding eigenvectors. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { n } = \mathbf { P D P } ^ { - 1 }\).
[0pt] [The evaluation of \(\mathbf { P } ^ { - 1 }\) is not required.]
Determine the set of values of the real constant \(k\) such that \(k ^ { n } \mathbf { A } ^ { n }\) tends to the zero matrix as \(n \rightarrow \infty\).
Question 10
View details
10 The curve \(C\) has equation $$y = \frac { x ^ { 2 } } { x + \lambda }$$ where \(\lambda\) is a non-zero constant. Obtain the equation of each of the asymptotes of \(C\). In separate diagrams, sketch \(C\) for the cases \(\lambda > 0\) and \(\lambda < 0\). In both cases the coordinates of the turning points must be indicated.
Question 11
View details
11 The line \(l _ { 1 }\) is parallel to the vector \(4 \mathbf { j } - \mathbf { k }\) and passes through the point \(A\) whose position vector is \(2 \mathbf { i } + \mathbf { j } + 4 \mathbf { k }\). The variable line \(l _ { 2 }\) is parallel to the vector \(\mathbf { i } - ( 2 \sin t ) \mathbf { j }\), where \(0 \leqslant t < 2 \pi\), and passes through the point \(B\) whose position vector is \(\mathbf { i } + 2 \mathbf { j } + 4 \mathbf { k }\). The points \(P\) and \(Q\) are on \(l _ { 1 }\) and \(l _ { 2 }\), respectively, and \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
  1. Find the length of \(P Q\) in terms of \(t\).
  2. Hence find the values of \(t\) for which \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
  3. For the case \(t = \frac { 1 } { 4 } \pi\), find the perpendicular distance from \(A\) to the plane \(B P Q\), giving your answer correct to 3 decimal places.
Question 12 EITHER
View details
By considering \(\sum _ { k = 0 } ^ { n - 1 } ( 1 + \mathrm { i } \tan \theta ) ^ { k }\), show that $$\sum _ { k = 0 } ^ { n - 1 } \cos k \theta \sec ^ { k } \theta = \cot \theta \sin n \theta \sec ^ { n } \theta$$ provided \(\theta\) is not an integer multiple of \(\frac { 1 } { 2 } \pi\). Hence or otherwise show that $$\sum _ { k = 0 } ^ { n - 1 } 2 ^ { k } \cos \left( \frac { 1 } { 3 } k \pi \right) = \frac { 2 ^ { n } } { \sqrt { 3 } } \sin \left( \frac { 1 } { 3 } n \pi \right)$$ Given that \(0 < x < 1\), show that $$\sum _ { k = 0 } ^ { n - 1 } \frac { \cos \left( k \cos ^ { - 1 } x \right) } { x ^ { k } } = \frac { \sin \left( n \cos ^ { - 1 } x \right) } { x ^ { n - 1 } \sqrt { } \left( 1 - x ^ { 2 } \right) }$$
Question 12 OR
View details
The linear transformations \(\mathrm { T } _ { 1 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) and \(\mathrm { T } _ { 2 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) are represented by the matrices \(\mathbf { M } _ { 1 }\) and \(\mathbf { M } _ { 2 }\), respectively, where $$\mathbf { M } _ { 1 } = \left( \begin{array} { r r r r } 1 & 1 & 1 & 2
1 & 4 & 7 & 8
1 & 7 & 11 & 13
1 & 2 & 5 & 5 \end{array} \right) , \quad \mathbf { M } _ { 2 } = \left( \begin{array} { r r r r } 2 & 0 & - 1 & - 1
5 & 1 & - 3 & - 3
3 & - 1 & - 1 & - 1
13 & - 1 & - 6 & - 6 \end{array} \right) .$$
  1. Find a basis for \(R _ { 1 }\), the range space of \(\mathrm { T } _ { 1 }\).
  2. Find a basis for \(K _ { 2 }\), the null space of \(\mathrm { T } _ { 2 }\), and hence show that \(K _ { 2 }\) is a subspace of \(R _ { 1 }\). The set of vectors which belong to \(R _ { 1 }\) but do not belong to \(K _ { 2 }\) is denoted by \(W\).
  3. State whether \(W\) is a vector space, justifying your answer. The linear transformation \(\mathrm { T } _ { 3 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is the result of applying \(\mathrm { T } _ { 1 }\) and then \(\mathrm { T } _ { 2 }\), in that order.
  4. Find the dimension of the null space of \(\mathrm { T } _ { 3 }\).