OCR FP2 2014 June — Question 2

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2014
SessionJune
TopicTaylor series
TypeDirect substitution into standard series

2 It is given that \(\mathrm { f } ( x ) = \ln \left( 1 + x ^ { 2 } \right)\).
  1. Using the standard Maclaurin expansion for \(\ln ( 1 + x )\), write down the first four terms in the expansion of \(\mathrm { f } ( x )\), stating the set of values of \(x\) for which the expansion is valid.
  2. Hence find the exact value of $$1 - \frac { 1 } { 2 } \left( \frac { 1 } { 2 } \right) ^ { 2 } + \frac { 1 } { 3 } \left( \frac { 1 } { 2 } \right) ^ { 4 } - \frac { 1 } { 4 } \left( \frac { 1 } { 2 } \right) ^ { 6 } + \ldots .$$