OCR FP2 (Further Pure Mathematics 2) 2014 June

Question 1
View details
1 Find \(\int _ { 0 } ^ { 2 } \frac { 1 } { \sqrt { 4 + x ^ { 2 } } } \mathrm {~d} x\), giving your answer exactly in logarithmic form.
Question 2
View details
2 It is given that \(\mathrm { f } ( x ) = \ln \left( 1 + x ^ { 2 } \right)\).
  1. Using the standard Maclaurin expansion for \(\ln ( 1 + x )\), write down the first four terms in the expansion of \(\mathrm { f } ( x )\), stating the set of values of \(x\) for which the expansion is valid.
  2. Hence find the exact value of $$1 - \frac { 1 } { 2 } \left( \frac { 1 } { 2 } \right) ^ { 2 } + \frac { 1 } { 3 } \left( \frac { 1 } { 2 } \right) ^ { 4 } - \frac { 1 } { 4 } \left( \frac { 1 } { 2 } \right) ^ { 6 } + \ldots .$$
Question 3
View details
3 The diagram shows the curve \(y = \frac { 1 } { x ^ { 3 } }\) for \(1 \leqslant x \leqslant n\) where \(n\) is an integer. A set of ( \(n - 1\) ) rectangles of unit width is drawn under the curve.
\includegraphics[max width=\textwidth, alt={}, center]{736932f1-4007-4a04-a08b-2551db0b136c-2_611_947_1103_557}
  1. Write down the sum of the areas of the rectangles.
  2. Hence show that \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { r ^ { 3 } } < \frac { 3 } { 2 }\).
Question 4
View details
4 The curves \(y = \cos ^ { - 1 } x\) and \(y = \tan ^ { - 1 } ( \sqrt { 2 } x )\) intersect at a point \(A\).
  1. Verify that the coordinates of \(A\) are \(\left( \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { 4 } \pi \right)\).
  2. Determine whether the tangents to the curves at \(A\) are perpendicular.
Question 5
View details
5 A curve has equation \(y = \frac { x ^ { 2 } - 8 } { x - 3 }\).
  1. Find the equations of the asymptotes of the curve.
  2. Prove that there are no points on the curve for which \(4 < y < 8\).
  3. Sketch the curve. Indicate the asymptotes in your sketch.
Question 6
View details
6
  1. Given that \(y = \cosh ^ { - 1 } x\), show that \(y = \ln \left( x + \sqrt { x ^ { 2 } - 1 } \right)\).
  2. Show that \(\frac { \mathrm { d } } { \mathrm { d } x } \left( \cosh ^ { - 1 } x \right) = \frac { 1 } { \sqrt { x ^ { 2 } - 1 } }\).
  3. Solve the equation \(\cosh x = 3\), giving your answers in logarithmic form.
Question 7
View details
7 It is given that, for non-negative integers \(n , I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sin ^ { n } x \mathrm {~d} x\).
  1. Show that \(I _ { n } = \frac { n - 1 } { n } I _ { n - 2 }\) for \(n \geqslant 2\).
  2. Explain why \(I _ { 2 n + 1 } < I _ { 2 n - 1 }\).
  3. It is given that \(I _ { 2 n + 1 } < I _ { 2 n } < I _ { 2 n - 1 }\). Take \(n = 5\) to find an interval within which the value of \(\pi\) lies.
Question 8
View details
8 A curve has polar equation \(r = a ( 1 + \cos \theta )\), where \(a\) is a positive constant and \(0 \leqslant \theta < 2 \pi\).
  1. Find the equation of the tangent at the pole.
  2. Sketch the curve.
  3. Find the area enclosed by the curve.
Question 9
View details
9 The equation \(10 x - 8 \ln x = 28\) has a root \(\alpha\) in the interval [3,4]. The iteration \(x _ { n + 1 } = \mathrm { g } \left( x _ { n } \right)\), where \(\mathrm { g } ( x ) = 2.8 + 0.8 \ln x\) and \(x _ { 1 } = 3.8\), is to be used to find \(\alpha\).
  1. Find the value of \(\alpha\) correct to 5 decimal places. You should show the result of each step of the iteration to 6 decimal places.
  2. Illustrate this iteration by means of a sketch.
  3. The difference, \(\delta _ { r }\), between successive approximations is given by \(\delta _ { r } = x _ { r + 1 } - x _ { r }\). Find \(\delta _ { 3 }\).
  4. Given that \(\delta _ { n + 1 } \approx \mathrm {~g} ^ { \prime } ( \alpha ) \delta _ { n }\), for all positive integers \(n\), estimate the smallest value of \(n\) such that \(\delta _ { n } < 10 ^ { - 6 } \delta _ { 1 }\). \section*{OCR}