7
\includegraphics[max width=\textwidth, alt={}, center]{72a1330a-c6dc-4f3a-9b0e-333b099f4509-4_782_1065_251_500}
The diagram shows the curve \(y = \frac { 1 } { x }\) for \(x > 0\) and a set of \(( n - 1 )\) rectangles of unit width below the curve. These rectangles can be used to obtain an inequality of the form
$$\frac { 1 } { a } + \frac { 1 } { a + 1 } + \frac { 1 } { a + 2 } + \ldots + \frac { 1 } { b } < \int _ { 1 } ^ { n } \frac { 1 } { x } \mathrm {~d} x$$
Another set of rectangles can be used similarly to obtain
$$\int _ { 1 } ^ { n } \frac { 1 } { x } \mathrm {~d} x < \frac { 1 } { c } + \frac { 1 } { c + 1 } + \frac { 1 } { c + 2 } + \ldots + \frac { 1 } { d }$$
- Write down the values of the constants \(a\) and \(c\), and express \(b\) and \(d\) in terms of \(n\).
The function f is defined by \(\mathrm { f } ( n ) = 1 + \frac { 1 } { 2 } + \frac { 1 } { 3 } + \ldots + \frac { 1 } { n } - \ln n\), for positive integers \(n\).
- Use your answers to part (i) to obtain upper and lower bounds for \(\mathrm { f } ( n )\).
- By using the first 2 terms of the Maclaurin series for \(\ln ( 1 + x )\) show that, for large \(n\),
$$f ( n + 1 ) - f ( n ) \approx - \frac { n - 1 } { 2 n ^ { 2 } ( n + 1 ) } .$$