OCR FP2 (Further Pure Mathematics 2) 2012 June

Question 1
View details
1 Express sech \(2 x\) in terms of exponentials and hence, by using the substitution \(u = e ^ { 2 x }\), find \(\int \operatorname { sech } 2 x \mathrm {~d} x\).
Question 2
View details
2 A curve has polar equation \(r = \cos \theta \sin 2 \theta\), for \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\). Find
  1. the equations of the tangents at the pole,
  2. the maximum value of \(r\),
  3. a cartesian equation of the curve, in a form not involving fractions.
Question 3
View details
3
  1. By quoting results given in the List of Formulae (MF1), prove that \(\tanh 2 x \equiv \frac { 2 \tanh x } { 1 + \tanh ^ { 2 } x }\).
  2. Solve the equation \(5 \tanh 2 x = 1 + 6 \tanh x\), giving your answers in logarithmic form.
Question 4
View details
4 It is given that the equation \(x ^ { 4 } - 2 x - 1 = 0\) has only one positive root, \(\alpha\), and \(1.3 < \alpha < 1.5\).

  1. \includegraphics[max width=\textwidth, alt={}, center]{72a1330a-c6dc-4f3a-9b0e-333b099f4509-2_433_424_1119_817} The diagram shows a sketch of \(y = x\) and \(y = \sqrt [ 4 ] { 2 x + 1 }\) for \(x \geqslant 0\). Use the iteration \(x _ { n + 1 } = \sqrt [ 4 ] { 2 x _ { n } + 1 }\) with \(x _ { 1 } = 1.35\) to find \(x _ { 2 }\) and \(x _ { 3 }\), correct to 4 decimal places. On the copy of the diagram show how the iteration converges to \(\alpha\).
  2. For the same equation, the iteration \(x _ { n + 1 } = \frac { 1 } { 2 } \left( x _ { n } ^ { 4 } - 1 \right)\) with \(x _ { 1 } = 1.35\) gives \(x _ { 2 } = 1.1608\) and \(x _ { 3 } = 0.4077\), correct to 4 decimal places. Draw a sketch of \(y = x\) and \(y = \frac { 1 } { 2 } \left( x ^ { 4 } - 1 \right)\) for \(x \geqslant 0\), and show how this iteration does not converge to \(\alpha\).
  3. Find the positive root of the equation \(x ^ { 4 } - 2 x - 1 = 0\) by using the Newton-Raphson method with \(x _ { 1 } = 1.35\), giving the root correct to 4 decimal places.
Question 5
View details
5 A function is defined by \(\mathrm { f } ( x ) = \sinh ^ { - 1 } x + \sinh ^ { - 1 } \left( \frac { 1 } { x } \right)\), for \(x \neq 0\).
  1. When \(x > 0\), show that the value of \(\mathrm { f } ( x )\) for which \(\mathrm { f } ^ { \prime } ( x ) = 0\) is \(2 \ln ( 1 + \sqrt { 2 } )\).

  2. \includegraphics[max width=\textwidth, alt={}, center]{72a1330a-c6dc-4f3a-9b0e-333b099f4509-3_497_659_520_708} The diagram shows the graph of \(y = \mathrm { f } ( x )\) for \(x > 0\). Sketch the graph of \(y = \mathrm { f } ( x )\) for \(x < 0\) and state the range of values that \(\mathrm { f } ( x )\) can take for \(x \neq 0\).
Question 6
View details
6 It is given that, for non-negative integers \(n\), $$I _ { n } = \int _ { 0 } ^ { \pi } x ^ { n } \sin x \mathrm {~d} x$$
  1. Prove that, for \(n \geqslant 2 , I _ { n } = \pi ^ { n } - n ( n - 1 ) I _ { n - 2 }\).
  2. Find \(I _ { 5 }\) in terms of \(\pi\).
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{72a1330a-c6dc-4f3a-9b0e-333b099f4509-4_782_1065_251_500} The diagram shows the curve \(y = \frac { 1 } { x }\) for \(x > 0\) and a set of \(( n - 1 )\) rectangles of unit width below the curve. These rectangles can be used to obtain an inequality of the form $$\frac { 1 } { a } + \frac { 1 } { a + 1 } + \frac { 1 } { a + 2 } + \ldots + \frac { 1 } { b } < \int _ { 1 } ^ { n } \frac { 1 } { x } \mathrm {~d} x$$ Another set of rectangles can be used similarly to obtain $$\int _ { 1 } ^ { n } \frac { 1 } { x } \mathrm {~d} x < \frac { 1 } { c } + \frac { 1 } { c + 1 } + \frac { 1 } { c + 2 } + \ldots + \frac { 1 } { d }$$
  1. Write down the values of the constants \(a\) and \(c\), and express \(b\) and \(d\) in terms of \(n\). The function f is defined by \(\mathrm { f } ( n ) = 1 + \frac { 1 } { 2 } + \frac { 1 } { 3 } + \ldots + \frac { 1 } { n } - \ln n\), for positive integers \(n\).
  2. Use your answers to part (i) to obtain upper and lower bounds for \(\mathrm { f } ( n )\).
  3. By using the first 2 terms of the Maclaurin series for \(\ln ( 1 + x )\) show that, for large \(n\), $$f ( n + 1 ) - f ( n ) \approx - \frac { n - 1 } { 2 n ^ { 2 } ( n + 1 ) } .$$
Question 8
View details
8 The curve \(C _ { 1 }\) has equation \(y = \frac { \mathrm { p } ( x ) } { \mathrm { q } ( x ) }\), where \(\mathrm { p } ( x )\) and \(\mathrm { q } ( x )\) are polynomials of degree 2 and 1 respectively. The asymptotes of the curve are \(x = - 2\) and \(y = \frac { 1 } { 2 } x + 1\), and the curve passes through the point \(\left( - 1 , \frac { 17 } { 2 } \right)\).
  1. Express the equation of \(C _ { 1 }\) in the form \(y = \frac { \mathrm { p } ( x ) } { \mathrm { q } ( x ) }\).
  2. For the curve \(C _ { 1 }\), find the range of values that \(y\) can take.
  3. For the curve \(C _ { 1 }\), find the range of values that \(y\) can take.
    Another curve, \(C _ { 2 }\), has equation \(y ^ { 2 } = \frac { \mathrm { p } ( x ) } { \mathrm { q } ( x ) }\), where \(\mathrm { p } ( x )\) and \(\mathrm { q } ( x )\) are the polynomials found in part (i).
  4. It is given that \(C _ { 2 }\) intersects the line \(y = \frac { 1 } { 2 } x + 1\) exactly once. Find the coordinates of the point of intersection. Another curve, \(C _ { 2 }\), has equation \(y ^ { 2 } = \frac { \mathrm { p } ( x ) } { \mathrm { q } ( x ) }\), where \(\mathrm { p } ( x )\) and \(\mathrm { q } ( x )\) are the polynomials found in part (i).
  5. It is given that \(C _ { 2 }\) intersects the line \(y = \frac { 1 } { 2 } x + 1\) exactly once. Find the coordinates of the point of
    intersection. \section*{THERE ARE NO QUESTIONS WRITTEN ON THIS PAGE.}