OCR MEI FP1 (Further Pure Mathematics 1) 2016 June

Question 1
View details
1 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { c c } 8 & - 2
p & 1 \end{array} \right)\), where \(p \neq - 4\).
  1. Find the inverse of \(\mathbf { M }\) in terms of \(p\).
  2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{578345cb-e7a1-41fd-abf8-a977912965e8-2_1086_885_584_587} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure} The triangle shown in Fig. 1 undergoes the transformation represented by the matrix \(\left( \begin{array} { c c } 8 & - 2
    3 & 1 \end{array} \right)\). Find the area of the image of the triangle following this transformation.
Question 2
View details
2 The complex number \(z _ { 1 }\) is \(2 - 5 \mathrm { j }\) and the complex number \(z _ { 2 }\) is \(( a - 1 ) + ( 2 - b ) \mathrm { j }\), where \(a\) and \(b\) are real.
  1. Express \(\frac { z _ { 1 } { } ^ { * } } { z _ { 1 } }\) in the form \(x + y \mathrm { j }\), giving \(x\) and \(y\) in exact form. You must show clearly how you obtain your
    answer.
  2. Given that \(\frac { z _ { 1 } { } ^ { * } } { z _ { 1 } } = z _ { 2 }\), find the exact values of \(a\) and \(b\).
Question 3
View details
3 You are given that \(\mathbf { A } = \left( \begin{array} { c c c } \lambda & 6 & - 4
2 & 5 & - 1
- 1 & 4 & 3 \end{array} \right) , \mathbf { B } = \left( \begin{array} { c c c } - 19 & 34 & - 14
5 & - 5 & 5
- 13 & 18 & - 3 \end{array} \right)\) and \(\mathbf { A B } = \mu \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity
matrix.
  1. Find the values of \(\lambda\) and \(\mu\).
  2. Hence find \(\mathbf { B } ^ { - 1 }\).
Question 4
View details
4
  1. Use standard series to show that $$\sum _ { r = 1 } ^ { n } r ^ { 2 } ( 2 r - p ) = \frac { 1 } { 6 } n ( n + 1 ) \left( 3 n ^ { 2 } + ( 3 - 2 p ) n - p \right) ,$$ where \(p\) is a constant.
  2. Given that the coefficients of \(n ^ { 3 }\) and \(n ^ { 4 }\) in the expression for \(\sum _ { r = 1 } ^ { n } r ^ { 2 } ( 2 r - p )\) are equal, find the value of \(p\).
Question 5
View details
5 The loci \(C _ { 1 }\) and \(C _ { 2 }\) are given by \(| z + 3 - 4 \mathrm { j } | = 5\) and arg \(( z + 3 - 6 \mathrm { j } ) = \frac { 1 } { 2 } \pi\) respectively.
  1. Sketch, on a single Argand diagram, the loci \(C _ { 1 }\) and \(C _ { 2 }\).
  2. Write down the complex number represented by the point of intersection of \(C _ { 1 }\) and \(C _ { 2 }\).
  3. Indicate, by shading on your sketch, the region satisfying $$| z + 3 - 4 \mathrm { j } | \geqslant 5 \text { and } \frac { 1 } { 2 } \pi \leqslant \arg ( z + 3 - 6 \mathrm { j } ) \leqslant \frac { 3 } { 4 } \pi .$$
Question 6
View details
6 A sequence is defined by \(u _ { 1 } = 8\) and \(u _ { n + 1 } = 3 u _ { n } + 2 n + 5\). Prove by induction that \(u _ { n } = 4 \left( 3 ^ { n } \right) - n - 3\).
Question 7
View details
7 The function \(\mathrm { f } ( z ) = 2 z ^ { 4 } - 9 z ^ { 3 } + A z ^ { 2 } + B z - 26\) has real coefficients. The equation \(\mathrm { f } ( z ) = 0\) has two real roots, \(\alpha\) and \(\beta\), where \(\alpha > \beta\), and two complex roots, \(\gamma\) and \(\delta\), where \(\gamma = 3 + 2 \mathrm { j }\).
  1. Show that \(\alpha + \beta = - \frac { 3 } { 2 }\) and find the value of \(\alpha \beta\).
  2. Hence find the two real roots \(\alpha\) and \(\beta\).
  3. Find the values of \(A\) and \(B\).
  4. Write down the roots of the equation \(\mathrm { f } \left( \frac { w } { \mathrm { j } } \right) = 0\).
Question 8
View details
8 A curve has equation \(y = \frac { 3 x ^ { 2 } - 9 } { x ^ { 2 } + 3 x - 4 }\).
  1. Find the equations of the two vertical asymptotes and the one horizontal asymptote of this curve.
  2. State, with justification, how the curve approaches the horizontal asymptote for large positive and large negative values of \(x\).
  3. Sketch the curve.
  4. Solve the inequality \(\frac { 3 x ^ { 2 } - 9 } { x ^ { 2 } + 3 x - 4 } \geqslant 0\).
Question 9
View details
9 You are given that \(\frac { 3 } { 4 ( 2 r - 1 ) } - \frac { 1 } { 2 r + 1 } + \frac { 1 } { 4 ( 2 r + 3 ) } = \frac { 2 r + 5 } { ( 2 r - 1 ) ( 2 r + 1 ) ( 2 r + 3 ) }\).
  1. Use the method of differences to show that $$\sum _ { r = 1 } ^ { n } \frac { 2 r + 5 } { ( 2 r - 1 ) ( 2 r + 1 ) ( 2 r + 3 ) } = \frac { 2 } { 3 } - \frac { 3 } { 4 ( 2 n + 1 ) } + \frac { 1 } { 4 ( 2 n + 3 ) } .$$
  2. Write down the limit to which \(\sum _ { r = 1 } ^ { n } \frac { 2 r + 5 } { ( 2 r - 1 ) ( 2 r + 1 ) ( 2 r + 3 ) }\) converges as \(n\) tends to infinity.
  3. Find the sum of the finite series $$\frac { 45 } { 39 \times 41 \times 43 } + \frac { 47 } { 41 \times 43 \times 45 } + \frac { 49 } { 43 \times 45 \times 47 } + \ldots + \frac { 105 } { 99 \times 101 \times 103 } ,$$ giving your answer to 3 significant figures. \section*{END OF QUESTION PAPER}