OCR MEI FP1 (Further Pure Mathematics 1) 2015 June

Question 1
View details
1 Given that \(\mathbf { M } \binom { x } { y } = \binom { 1 } { 3 }\), where \(\mathbf { M } = \left( \begin{array} { r r } 4 & - 3
8 & 21 \end{array} \right)\), find \(x\) and \(y\).
Question 2
View details
2 Find the roots of the quadratic equation \(z ^ { 2 } - 4 z + 13 = 0\).
Find the modulus and argument of each root.
Question 3
View details
3 The equation \(2 \mathrm { x } ^ { 3 } + \mathrm { px } ^ { 2 } + \mathrm { qx } + \mathrm { r } = 0\) has a root at \(x = 4\). The sum of the roots is 6 and the product of the roots is - 10 . Find \(p , q\) and \(r\).
Question 4
View details
4 Indicate, on a single Argand diagram
  1. the set of points for which \(\arg ( z - ( - 1 - \mathrm { j } ) ) = \frac { \pi } { 4 }\),
  2. the set of points for which \(| z - ( 1 + 2 j ) | = 2\),
  3. the set of points for which \(| z - ( 1 + 2 j ) | \geqslant 2\) and \(0 \leqslant \arg ( z - ( - 1 - j ) ) \leqslant \frac { \pi } { 4 }\).
Question 5
View details
5
  1. Show that \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } ( 2 \mathrm { r } - 1 ) = \mathrm { n } ^ { 2 }\).
  2. Show that \(\frac { \sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } ( 2 \mathrm { r } - 1 ) } { \sum _ { \mathrm { r } = \mathrm { n } + 1 } ^ { 2 \mathrm { n } } ( 2 \mathrm { r } - 1 ) } = \mathrm { k }\), where \(k\) is a constant to be determined.
Question 6
View details
6 A sequence is defined by \(u _ { 1 } = 3\) and \(u _ { n + 1 } = 3 u _ { n } - 5\). Prove by induction that \(u _ { n } = \frac { 3 ^ { n - 1 } + 5 } { 2 }\). Section B (36 marks)
Question 7
View details
7 A curve has equation \(\mathrm { y } = \frac { ( 3 \mathrm { x } + 2 ) ( \mathrm { x } - 3 ) } { ( \mathrm { x } - 2 ) ( \mathrm { x } + 1 ) }\).
  1. Write down the equations of the three asymptotes and the coordinates of the points where the curve crosses the axes.
  2. Sketch the curve, justifying how it approaches the horizontal asymptote.
  3. Find the set of values of \(x\) for which \(y \geqslant 3\).
Question 8
View details
8 The complex number \(5 + 4 \mathrm { j }\) is denoted by \(\alpha\).
  1. Find \(\alpha ^ { 2 }\) and \(\alpha ^ { 3 }\), showing your working.
  2. The real numbers \(q\) and \(r\) are such that \(\alpha ^ { 3 } + \mathrm { q } \alpha ^ { 2 } + 11 \alpha + \mathrm { r } = 0\). Find \(q\) and \(r\). Let \(\mathrm { f } ( \mathrm { z } ) = \mathrm { z } ^ { 3 } + \mathrm { qz } ^ { 2 } + 11 \mathrm { z } + \mathrm { r }\), where \(q\) and \(r\) are as in part (ii).
  3. Solve the equation \(\mathrm { f } ( z ) = 0\).
  4. Solve the equation \(z ^ { 4 } + q z ^ { 3 } + 11 z ^ { 2 } + r z = z ^ { 3 } + q z ^ { 2 } + 11 z + r\).
Question 9
View details
9 The triangle ABC has vertices at \(\mathrm { A } ( 0,0 ) , \mathrm { B } ( 0,2 )\) and \(\mathrm { C } ( 4,1 )\). The matrix \(\left( \begin{array} { r r } 1 & - 2
3 & 0 \end{array} \right)\) represents a transformation T .
  1. The transformation \(T\) maps triangle \(A B C\) onto triangle \(A ^ { \prime } B ^ { \prime } C ^ { \prime }\). Find the coordinates of \(A ^ { \prime } , B ^ { \prime }\) and \(C ^ { \prime }\). Triangle \(A ^ { \prime } B ^ { \prime } C ^ { \prime }\) is now mapped onto triangle \(A ^ { \prime \prime } B ^ { \prime \prime } C ^ { \prime \prime }\) using the matrix \(\mathbf { M } = \left( \begin{array} { l l } 4 & 0
    0 & 2 \end{array} \right)\).
  2. Describe fully the transformation represented by \(\mathbf { M }\).
  3. Triangle \(\mathrm { A } ^ { \prime \prime } \mathrm { B } ^ { \prime \prime } \mathrm { C } ^ { \prime \prime }\) is now mapped back onto ABC by a single transformation. Find the matrix representing this transformation.
  4. Calculate the area of \(A ^ { \prime \prime } B ^ { \prime \prime } C ^ { \prime \prime }\).