OCR MEI FP1 (Further Pure Mathematics 1) 2010 June

Question 1
View details
1 Find the values of \(A , B\) and \(C\) in the identity \(4 x ^ { 2 } - 16 x + C \equiv A ( x + B ) ^ { 2 } + 2\).
Question 2
View details
2 You are given that \(\mathbf { M } = \left( \begin{array} { r r } 2 & - 5
3 & 7 \end{array} \right)\).
\(\mathbf { M } \binom { x } { y } = \binom { 9 } { - 1 }\) represents two simultaneous equations.
  1. Write down these two equations.
  2. Find \(\mathbf { M } ^ { - 1 }\) and use it to solve the equations.
Question 3
View details
3 The cubic equation \(2 z ^ { 3 } - z ^ { 2 } + 4 z + k = 0\), where \(k\) is real, has a root \(z = 1 + 2 \mathrm { j }\).
Write down the other complex root. Hence find the real root and the value of \(k\).
Question 4
View details
4 The roots of the cubic equation \(x ^ { 3 } - 2 x ^ { 2 } - 8 x + 11 = 0\) are \(\alpha , \beta\) and \(\gamma\).
Find the cubic equation with roots \(\alpha + 1 , \beta + 1\) and \(\gamma + 1\).
Question 5
View details
5 Use the result \(\frac { 1 } { 5 r - 1 } - \frac { 1 } { 5 r + 4 } \equiv \frac { 5 } { ( 5 r - 1 ) ( 5 r + 4 ) }\) and the method of differences to find $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 5 r - 1 ) ( 5 r + 4 ) }$$ simplifying your answer.
Question 6
View details
6 A sequence is defined by \(u _ { 1 } = 2\) and \(u _ { n + 1 } = \frac { u _ { n } } { 1 + u _ { n } }\).
  1. Calculate \(u _ { 3 }\).
  2. Prove by induction that \(u _ { n } = \frac { 2 } { 2 n - 1 }\). Section B (36 marks)
Question 7
View details
7 Fig. 7 shows an incomplete sketch of \(y = \frac { ( 2 x - 1 ) ( x + 3 ) } { ( x - 3 ) ( x - 2 ) }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e449d411-aaa9-4167-aa9c-c28d31446d52-3_786_1376_450_386} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the coordinates of the points where the curve cuts the axes.
  2. Write down the equations of the three asymptotes.
  3. Determine whether the curve approaches the horizontal asymptote from above or below for large positive values of \(x\), justifying your answer. Copy and complete the sketch.
  4. Solve the inequality \(\frac { ( 2 x - 1 ) ( x + 3 ) } { ( x - 3 ) ( x - 2 ) } < 2\).
Question 8
View details
8 Two complex numbers, \(\alpha\) and \(\beta\), are given by \(\alpha = \sqrt { 3 } + \mathrm { j }\) and \(\beta = 3 \mathrm { j }\).
  1. Find the modulus and argument of \(\alpha\) and \(\beta\).
  2. Find \(\alpha \beta\) and \(\frac { \beta } { \alpha }\), giving your answers in the form \(a + b \mathrm { j }\), showing your working.
  3. Plot \(\alpha , \beta , \alpha \beta\) and \(\frac { \beta } { \alpha }\) on a single Argand diagram.
Question 9
View details
9 The matrices \(\mathbf { P } = \left( \begin{array} { r r } 0 & 1
- 1 & 0 \end{array} \right)\) and \(\mathbf { Q } = \left( \begin{array} { l l } 2 & 0
0 & 1 \end{array} \right)\) represent transformations \(P\) and \(Q\) respectively.
  1. Describe fully the transformations P and Q . \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{e449d411-aaa9-4167-aa9c-c28d31446d52-4_625_849_470_648} \captionsetup{labelformat=empty} \caption{Fig. 9}
    \end{figure} Fig. 9 shows triangle T with vertices \(\mathrm { A } ( 2,0 ) , \mathrm { B } ( 1,2 )\) and \(\mathrm { C } ( 3,1 )\).
    Triangle T is transformed first by transformation P , then by transformation Q .
  2. Find the single matrix that represents this composite transformation.
  3. This composite transformation maps triangle T onto triangle \(\mathrm { T } ^ { \prime }\), with vertices \(\mathrm { A } ^ { \prime } , \mathrm { B } ^ { \prime }\) and \(\mathrm { C } ^ { \prime }\). Calculate the coordinates of \(\mathrm { A } ^ { \prime } , \mathrm { B } ^ { \prime }\) and \(\mathrm { C } ^ { \prime }\). T' is reflected in the line \(y = - x\) to give a new triangle, T".
  4. Find the matrix \(\mathbf { R }\) that represents reflection in the line \(y = - x\).
  5. A single transformation maps \(\mathrm { T } ^ { \prime \prime }\) onto the original triangle, T . Find the matrix representing this transformation.