A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Stats And Pure
Complex Numbers Argand & Loci
Q8
OCR MEI FP1 2010 January — Question 8
Exam Board
OCR MEI
Module
FP1 (Further Pure Mathematics 1)
Year
2010
Session
January
Topic
Complex Numbers Argand & Loci
8
Fig. 8 shows an Argand diagram. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{df275813-15de-496f-9742-427a9e03f431-3_892_899_1048_664} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
Write down the equation of the locus represented by the circumference of circle B.
Write down the two inequalities that define the shaded region between, but not including, circles A and B.
Draw an Argand diagram to show the region where $$\frac { \pi } { 4 } < \arg ( z - ( 2 + \mathrm { j } ) ) < \frac { 3 \pi } { 4 }$$
Determine whether the point \(43 + 47 \mathrm { j }\) lies within this region.
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9