OCR MEI FP1 (Further Pure Mathematics 1) 2010 January

Question 1
View details
1 Two complex numbers are given by \(\alpha = - 3 + \mathrm { j }\) and \(\beta = 5 - 2 \mathrm { j }\).
Find \(\alpha \beta\) and \(\frac { \alpha } { \beta }\), giving your answers in the form \(a + b \mathrm { j }\), showing your working.
Question 2
View details
2 You are given that \(\mathbf { A } = \left( \begin{array} { r } 4
- 2
4 \end{array} \right) , \mathbf { B } = \left( \begin{array} { r r } 5 & 1
2 & - 3 \end{array} \right) , \mathbf { C } = \left( \begin{array} { l l l } 5 & 1 & 8 \end{array} \right)\) and \(\mathbf { D } = \left( \begin{array} { r r } - 2 & 0
4 & 1 \end{array} \right)\).
  1. Calculate, where they exist, \(\mathbf { A B } , \mathbf { C A } , \mathbf { B } + \mathbf { D }\) and \(\mathbf { A C }\) and indicate any that do not exist.
  2. Matrices \(\mathbf { B }\) and \(\mathbf { D }\) represent transformations B and D respectively. Find the single matrix that represents transformation B followed by transformation D.
Question 3
View details
3 The roots of the cubic equation \(4 x ^ { 3 } - 12 x ^ { 2 } + k x - 3 = 0\) may be written \(a - d , a\) and \(a + d\). Find the roots and the value of \(k\).
Question 4
View details
4 You are given that if \(\mathbf { M } = \left( \begin{array} { r r r } 4 & 0 & 1
- 6 & 1 & 1
5 & 2 & 5 \end{array} \right)\) then \(\mathbf { M } ^ { - 1 } = \frac { 1 } { k } \left( \begin{array} { r r r } - 3 & - 2 & 1
- 35 & - 15 & 10
17 & 8 & - 4 \end{array} \right)\).
Find the value of \(k\). Hence solve the following simultaneous equations. $$\begin{aligned} 4 x + z & = 9
- 6 x + y + z & = 32
5 x + 2 y + 5 z & = 81 \end{aligned}$$
Question 5
View details
5 Use standard series formulae to show that \(\sum _ { r = 1 } ^ { n } ( r + 2 ) ( r - 3 ) = \frac { 1 } { 3 } n \left( n ^ { 2 } - 19 \right)\).
Question 6
View details
6 Prove by induction that \(1 \times 2 + 2 \times 3 + \ldots + n ( n + 1 ) = \frac { n ( n + 1 ) ( n + 2 ) } { 3 }\) for all positive integers \(n\). Section B (36 marks)
Question 7
View details
7 A curve has equation \(y = \frac { 5 x - 9 } { ( 2 x - 3 ) ( 2 x + 7 ) }\).
  1. Write down the equations of the two vertical asymptotes and the one horizontal asymptote.
  2. Describe the behaviour of the curve for large positive and large negative values of \(x\), justifying your answers.
  3. Sketch the curve.
  4. Solve the inequality \(\frac { 5 x - 9 } { ( 2 x - 3 ) ( 2 x + 7 ) } \leqslant 0\).
Question 8
View details
8
  1. Fig. 8 shows an Argand diagram. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{df275813-15de-496f-9742-427a9e03f431-3_892_899_1048_664} \captionsetup{labelformat=empty} \caption{Fig. 8}
    \end{figure}
    1. Write down the equation of the locus represented by the circumference of circle B.
    2. Write down the two inequalities that define the shaded region between, but not including, circles A and B.
    1. Draw an Argand diagram to show the region where $$\frac { \pi } { 4 } < \arg ( z - ( 2 + \mathrm { j } ) ) < \frac { 3 \pi } { 4 }$$
    2. Determine whether the point \(43 + 47 \mathrm { j }\) lies within this region.
Question 9
View details
9
  1. Verify that \(\frac { 4 + r } { r ( r + 1 ) ( r + 2 ) } = \frac { 2 } { r } - \frac { 3 } { r + 1 } + \frac { 1 } { r + 2 }\).
  2. Use the method of differences to show that $$\sum _ { r = 1 } ^ { n } \frac { 4 + r } { r ( r + 1 ) ( r + 2 ) } = \frac { 3 } { 2 } - \frac { 2 } { n + 1 } + \frac { 1 } { n + 2 } .$$
  3. Write down the limit to which \(\sum _ { r = 1 } ^ { n } \frac { 4 + r } { r ( r + 1 ) ( r + 2 ) }\) converges as \(n\) tends to infinity.
  4. Find \(\sum _ { r = 50 } ^ { 100 } \frac { 4 + r } { r ( r + 1 ) ( r + 2 ) }\), giving your answer to 3 significant figures.