2 You are given that \(\mathbf { A } = \left( \begin{array} { r } 4
- 2
4 \end{array} \right) , \mathbf { B } = \left( \begin{array} { r r } 5 & 1
2 & - 3 \end{array} \right) , \mathbf { C } = \left( \begin{array} { l l l } 5 & 1 & 8 \end{array} \right)\) and \(\mathbf { D } = \left( \begin{array} { r r } - 2 & 0
4 & 1 \end{array} \right)\).
- Calculate, where they exist, \(\mathbf { A B } , \mathbf { C A } , \mathbf { B } + \mathbf { D }\) and \(\mathbf { A C }\) and indicate any that do not exist.
- Matrices \(\mathbf { B }\) and \(\mathbf { D }\) represent transformations B and D respectively. Find the single matrix that represents transformation B followed by transformation D.