A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q8
OCR FP1 2012 January — Question 8
Exam Board
OCR
Module
FP1 (Further Pure Mathematics 1)
Year
2012
Session
January
Topic
Sequences and series, recurrence and convergence
8
Show that \(\frac { r } { r + 1 } - \frac { r - 1 } { r } \equiv \frac { 1 } { r ( r + 1 ) }\).
Hence find an expression, in terms of \(n\), for $$\frac { 1 } { 2 } + \frac { 1 } { 6 } + \frac { 1 } { 12 } + \ldots + \frac { 1 } { n ( n + 1 ) }$$
Hence find \(\sum _ { r = n + 1 } ^ { \infty } \frac { 1 } { r ( r + 1 ) }\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10