OCR FP1 2012 January — Question 8

Exam BoardOCR
ModuleFP1 (Further Pure Mathematics 1)
Year2012
SessionJanuary
TopicSequences and series, recurrence and convergence

8
  1. Show that \(\frac { r } { r + 1 } - \frac { r - 1 } { r } \equiv \frac { 1 } { r ( r + 1 ) }\).
  2. Hence find an expression, in terms of \(n\), for $$\frac { 1 } { 2 } + \frac { 1 } { 6 } + \frac { 1 } { 12 } + \ldots + \frac { 1 } { n ( n + 1 ) }$$
  3. Hence find \(\sum _ { r = n + 1 } ^ { \infty } \frac { 1 } { r ( r + 1 ) }\).