OCR MEI M1 2010 June — Question 8

Exam BoardOCR MEI
ModuleM1 (Mechanics 1)
Year2010
SessionJune
TopicFriction

8 A cylindrical tub of mass 250 kg is on a horizontal floor. Resistance to its motion other than that due to friction is negligible. The first attempt to move the tub is by pulling it with a force of 150 N in the \(\mathbf { i }\) direction, as shown in Fig. 8.1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6cca1e5e-82b0-487d-8048-b9db7745dea6-5_319_1358_511_392} \captionsetup{labelformat=empty} \caption{Fig. 8.1}
\end{figure}
  1. Calculate the acceleration of the tub if friction is ignored. In fact, there is friction and the tub does not move.
  2. Write down the magnitude and direction of the frictional force opposing the pull. Two more forces are now added to the 150 N force in a second attempt to move the tub, as shown in Fig. 8.2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{6cca1e5e-82b0-487d-8048-b9db7745dea6-5_502_935_1411_607} \captionsetup{labelformat=empty} \caption{Fig. 8.2}
    \end{figure} Angle \(\theta\) is acute and chosen so that the resultant of the three forces is in the \(\mathbf { i }\) direction.
  3. Determine the value of \(\theta\) and the resultant of the three forces. With this resultant force, the tub moves with constant acceleration and travels 1 metre from rest in 2 seconds.
  4. Show that the magnitude of the friction acting on the tub is 661 N , correct to 3 significant figures. When the speed of the tub is \(1.8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), it comes to a part of the floor where the friction on the tub is 200 N greater. The pulling forces stay the same.
  5. Find the velocity of the tub when it has moved a further 1.65 m .
    4
  6. □ box P □
    \multirow[t]{10}{*}{4
  7. }
  8. 4