OCR MEI M1 (Mechanics 1) 2010 June

Question 1
View details
1 An egg falls from rest a distance of 75 cm to the floor.
Neglecting air resistance, at what speed does it hit the floor?
Question 2
View details
2 Fig. 2 shows a sack of rice of weight 250 N hanging in equilibrium supported by a light rope AB . End A of the rope is attached to the sack. The rope passes over a small smooth fixed pulley. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6cca1e5e-82b0-487d-8048-b9db7745dea6-2_458_479_705_833} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} Initially, end B of the rope is attached to a vertical wall as shown in Fig. 2.
  1. Calculate the horizontal and the vertical forces acting on the wall due to the rope. End B of the rope is now detached from the wall and attached instead to the top of the sack. The sack is in equilibrium with both sections of the rope vertical.
  2. Calculate the tension in the rope.
Question 3
View details
3 The three forces \(\left( \begin{array} { r } - 1
14
- 8 \end{array} \right) \mathrm { N } , \left( \begin{array} { r } 3
- 9
10 \end{array} \right) \mathrm { N }\) and \(\mathbf { F } \mathrm { N }\) act on a body of mass 4 kg in deep space and give it an acceleration of \(\left( \begin{array} { r } - 1
2
4 \end{array} \right) \mathrm { m } \mathrm { s } ^ { - 2 }\).
  1. Calculate \(\mathbf { F }\). At one instant the velocity of the body is \(\left( \begin{array} { r } - 3
    3
    6 \end{array} \right) \mathrm { m } \mathrm { s } ^ { - 1 }\).
  2. Calculate the velocity and also the speed of the body 3 seconds later.
Question 4
View details
4 As shown in Fig. 4, boxes P and Q are descending vertically supported by a parachute. Box P has mass 75 kg . Box Q has mass 25 kg and hangs from box P by means of a light vertical wire. Air resistance on the boxes should be neglected. At one stage the boxes are slowing in their descent with the parachute exerting an upward vertical force of 1030 N on box P . The acceleration of the boxes is \(a \mathrm {~m} \mathrm {~s} ^ { - 2 }\) upwards and the tension in the wire is \(T \mathrm {~N}\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6cca1e5e-82b0-487d-8048-b9db7745dea6-3_341_364_210_1489} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Draw a labelled diagram showing all the forces acting on box P and another diagram showing all the forces acting on box Q .
  2. Write down separate equations of motion for box P and for box Q .
  3. Calculate the tension in the wire.
Question 5
View details
5 In this question the unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are pointing east and north respectively.
  1. Calculate the bearing of the vector \(- 4 \mathbf { i } - 6 \mathbf { j }\). The vector \(- 4 \mathbf { i } - 6 \mathbf { j } + k ( 3 \mathbf { i } - 2 \mathbf { j } )\) is in the direction \(7 \mathbf { i } - 9 \mathbf { j }\).
  2. Find \(k\).
Question 6
View details
6 A small ball is kicked off the edge of a jetty over a calm sea. Air resistance is negligible. Fig. 6 shows
  • the point of projection, O,
  • the initial horizontal and vertical components of velocity,
  • the point A on the jetty vertically below O and at sea level,
  • the height, OA, of the jetty above the sea.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6cca1e5e-82b0-487d-8048-b9db7745dea6-3_458_1008_1786_571} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure} The time elapsed after the ball is kicked is \(t\) seconds.
  1. Find an expression in terms of \(t\) for the height of the ball above O at time \(t\). Find also an expression for the horizontal distance of the ball from O at this time.
  2. Determine how far the ball lands from A .
Question 7
View details
7 A point P on a piece of machinery is moving in a vertical straight line. The displacement of P above ground level at time \(t\) seconds is \(y\) metres. The displacement-time graph for the motion during the time interval \(0 \leqslant t \leqslant 4\) is shown in Fig. 7 . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6cca1e5e-82b0-487d-8048-b9db7745dea6-4_1026_1339_516_404} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Using the graph, determine for the time interval \(0 \leqslant t \leqslant 4\)
    (A) the greatest displacement of P above its position when \(t = 0\),
    (B) the greatest distance of P from its position when \(t = 0\),
    (C) the time interval in which P is moving downwards,
    (D) the times when P is instantaneously at rest. The displacement of P in the time interval \(0 \leqslant t \leqslant 3\) is given by \(y = - 4 t ^ { 2 } + 8 t + 12\).
  2. Use calculus to find expressions in terms of \(t\) for the velocity and for the acceleration of P in the interval \(0 \leqslant t \leqslant 3\).
  3. At what times does P have a speed of \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in the interval \(0 \leqslant t \leqslant 3\) ? In the time interval \(3 \leqslant t \leqslant 4 , \mathrm { P }\) has a constant acceleration of \(32 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). There is no sudden change in velocity when \(t = 3\).
  4. Find an expression in terms of \(t\) for the displacement of P in the interval \(3 \leqslant t \leqslant 4\).
Question 8
View details
8 A cylindrical tub of mass 250 kg is on a horizontal floor. Resistance to its motion other than that due to friction is negligible. The first attempt to move the tub is by pulling it with a force of 150 N in the \(\mathbf { i }\) direction, as shown in Fig. 8.1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6cca1e5e-82b0-487d-8048-b9db7745dea6-5_319_1358_511_392} \captionsetup{labelformat=empty} \caption{Fig. 8.1}
\end{figure}
  1. Calculate the acceleration of the tub if friction is ignored. In fact, there is friction and the tub does not move.
  2. Write down the magnitude and direction of the frictional force opposing the pull. Two more forces are now added to the 150 N force in a second attempt to move the tub, as shown in Fig. 8.2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{6cca1e5e-82b0-487d-8048-b9db7745dea6-5_502_935_1411_607} \captionsetup{labelformat=empty} \caption{Fig. 8.2}
    \end{figure} Angle \(\theta\) is acute and chosen so that the resultant of the three forces is in the \(\mathbf { i }\) direction.
  3. Determine the value of \(\theta\) and the resultant of the three forces. With this resultant force, the tub moves with constant acceleration and travels 1 metre from rest in 2 seconds.
  4. Show that the magnitude of the friction acting on the tub is 661 N , correct to 3 significant figures. When the speed of the tub is \(1.8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), it comes to a part of the floor where the friction on the tub is 200 N greater. The pulling forces stay the same.
  5. Find the velocity of the tub when it has moved a further 1.65 m .
    4
  6. □ box P □
    \multirow[t]{10}{*}{4
  7. }
  8. 4