3 The continuous random variable \(X\) has probability density function given by
$$\mathrm { f } ( x ) = \begin{cases} \mathrm { e } ^ { 2 x } & x < 0
\mathrm { e } ^ { - 2 x } & x \geqslant 0 \end{cases}$$
- Show that the moment generating function of \(X\) is \(\frac { 4 } { 4 - t ^ { 2 } }\), where \(| t | < 2\), and explain why the condition \(| t | < 2\) is necessary.
- Find \(\operatorname { Var } ( X )\).