OCR S1 2015 June — Question 4

Exam BoardOCR
ModuleS1 (Statistics 1)
Year2015
SessionJune
TopicLinear regression
TypeCalculate x on y regression line

4 The table shows the load a lorry was carrying, \(x\) tonnes, and the fuel economy, \(y \mathrm {~km}\) per litre, for 8 different journeys. You should assume that neither variable is controlled.
Load
\(( x\) tonnes \()\)
5.15.86.57.17.68.49.510.5
Fuel economy
\(( y \mathrm {~km}\) per litre \()\)
6.26.15.95.65.35.45.35.1
$$n = 8 \quad \sum x = 60.5 \quad \sum y = 44.9 \quad \sum x ^ { 2 } = 481.13 \quad \sum y ^ { 2 } = 253.17 \quad \sum x y = 334.65$$
  1. Calculate the equation of the regression line of \(y\) on \(x\).
  2. Estimate the fuel economy for a load of 9.2 tonnes.
  3. An analyst calculated the equation of the regression line of \(x\) on \(y\). Without calculating this equation, state the coordinates of the point where the two regression lines intersect.
  4. Describe briefly the method required to estimate the load when the fuel economy is 5.8 km per litre.