CAIE P3 2015 June — Question 5

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2015
SessionJune
TopicParametric equations

5 The parametric equations of a curve are $$x = a \cos ^ { 4 } t , \quad y = a \sin ^ { 4 } t$$ where \(a\) is a positive constant.
  1. Express \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. Show that the equation of the tangent to the curve at the point with parameter \(t\) is $$x \sin ^ { 2 } t + y \cos ^ { 2 } t = a \sin ^ { 2 } t \cos ^ { 2 } t$$
  3. Hence show that if the tangent meets the \(x\)-axis at \(P\) and the \(y\)-axis at \(Q\), then $$O P + O Q = a$$ where \(O\) is the origin.