OCR MEI C4 2014 June — Question 8

Exam BoardOCR MEI
ModuleC4 (Core Mathematics 4)
Year2014
SessionJune
TopicDifferential equations

8 Fig. 8.1 shows an upright cylindrical barrel containing water. The water is leaking out of a hole in the side of the barrel. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{413a0c52-b506-46d4-b1e4-fe13466abcc1-05_254_442_347_794} \captionsetup{labelformat=empty} \caption{Fig. 8.1}
\end{figure} The height of the water surface above the hole \(t\) seconds after opening the hole is \(h\) metres, where $$\frac { \mathrm { d } h } { \mathrm {~d} t } = - A \sqrt { h }$$ and where \(A\) is a positive constant. Initially the water surface is 1 metre above the hole.
  1. Verify that the solution to this differential equation is $$h = \left( 1 - \frac { 1 } { 2 } A t \right) ^ { 2 } .$$ The water stops leaking when \(h = 0\). This occurs after 20 seconds.
  2. Find the value of \(A\), and the time when the height of the water surface above the hole is 0.5 m . Fig. 8.2 shows a similar situation with a different barrel; \(h\) is in metres. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{413a0c52-b506-46d4-b1e4-fe13466abcc1-05_232_447_1489_794} \captionsetup{labelformat=empty} \caption{Fig. 8.2}
    \end{figure} For this barrel, $$\frac { \mathrm { d } h } { \mathrm {~d} t } = - B \frac { \sqrt { h } } { ( 1 + h ) ^ { 2 } } ,$$ where \(B\) is a positive constant. When \(t = 0 , h = 1\).
  3. Solve this differential equation, and hence show that $$h ^ { \frac { 1 } { 2 } } \left( 30 + 20 h + 6 h ^ { 2 } \right) = 56 - 15 B t .$$
  4. Given that \(h = 0\) when \(t = 20\), find \(B\). Find also the time when the height of the water surface above the hole is 0.5 m . \section*{END OF QUESTION PAPER}