OCR MEI C4 2014 June — Question 7

Exam BoardOCR MEI
ModuleC4 (Core Mathematics 4)
Year2014
SessionJune
TopicVectors: Lines & Planes

7 Fig. 7 shows a tetrahedron ABCD . The coordinates of the vertices, with respect to axes \(\mathrm { O } x y z\), are \(\mathrm { A } ( - 3,0,0 ) , \mathrm { B } ( 2,0 , - 2 ) , \mathrm { C } ( 0,4,0 )\) and \(\mathrm { D } ( 0,4,5 )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{413a0c52-b506-46d4-b1e4-fe13466abcc1-04_794_844_456_589} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the lengths of the edges AB and AC , and the size of the angle CAB . Hence calculate the area of triangle ABC .
  2. (A) Verify that \(4 \mathbf { i } - 3 \mathbf { j } + 10 \mathbf { k }\) is normal to the plane ABC .
    (B) Hence find the equation of this plane.
  3. Write down a vector equation for the line through D perpendicular to the plane ABC . Hence find the point of intersection of this line with the plane ABC . The volume of a tetrahedron is \(\frac { 1 } { 3 } \times\) area of base × height.
  4. Find the volume of the tetrahedron ABCD .