OCR MEI C4 (Core Mathematics 4) 2011 January

Question 1
View details
1
  1. Use the trapezium rule with four strips to estimate \(\int _ { - 2 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { x } } \mathrm {~d} x\), showing your working. Fig. 1 shows a sketch of \(y = \sqrt { 1 + \mathrm { e } ^ { x } }\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{f657e167-e6f8-4df2-901b-067c32835877-02_535_1074_571_532} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure}
  2. Suppose that the trapezium rule is used with more strips than in part (i) to estimate \(\int _ { - 2 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { x } } \mathrm {~d} x\). State, with a reason but no further calculation, whether this would give a larger or smaller estimate.
Question 2
View details
2 A curve is defined parametrically by the equations $$x = \frac { 1 } { 1 + t } , \quad y = \frac { 1 - t } { 1 + 2 t }$$ Find \(t\) in terms of \(x\). Hence find the cartesian equation of the curve, giving your answer as simply as possible.
Question 3
View details
3 Find the first three terms in the binomial expansion of \(\frac { 1 } { ( 3 - 2 x ) ^ { 3 } }\) in ascending powers of \(x\). State the set of values of \(x\) for which the expansion is valid.
Question 4
View details
4 The points A , B and C have coordinates \(( 2,0 , - 1 ) , ( 4,3 , - 6 )\) and \(( 9,3 , - 4 )\) respectively.
  1. Show that AB is perpendicular to BC .
  2. Find the area of triangle ABC .
Question 5
View details
5 Show that \(\frac { \sin 2 \theta } { 1 + \cos 2 \theta } = \tan \theta\).
Question 6
View details
6
  1. Find the point of intersection of the line \(\mathbf { r } = \left( \begin{array} { r } - 8
    - 2
    6 \end{array} \right) + \lambda \left( \begin{array} { r } - 3
    0
    1 \end{array} \right)\) and the plane \(2 x - 3 y + z = 11\).
  2. Find the acute angle between the line and the normal to the plane. Section B (36 marks)
Question 7
View details
7 A particle is moving vertically downwards in a liquid. Initially its velocity is zero, and after \(t\) seconds it is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Its terminal (long-term) velocity is \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). A model of the particle's motion is proposed. In this model, \(v = 5 \left( 1 - \mathrm { e } ^ { - 2 t } \right)\).
  1. Show that this equation is consistent with the initial and terminal velocities. Calculate the velocity after 0.5 seconds as given by this model.
  2. Verify that \(v\) satisfies the differential equation \(\frac { \mathrm { d } v } { \mathrm {~d} t } = 10 - 2 v\). In a second model, \(v\) satisfies the differential equation $$\frac { \mathrm { d } v } { \mathrm {~d} t } = 10 - 0.4 v ^ { 2 }$$ As before, when \(t = 0 , v = 0\).
  3. Show that this differential equation may be written as $$\frac { 10 } { ( 5 - v ) ( 5 + v ) } \frac { \mathrm { d } v } { \mathrm {~d} t } = 4$$ Using partial fractions, solve this differential equation to show that $$t = \frac { 1 } { 4 } \ln \left( \frac { 5 + v } { 5 - v } \right)$$ This can be re-arranged to give \(v = \frac { 5 \left( 1 - \mathrm { e } ^ { - 4 t } \right) } { 1 + \mathrm { e } ^ { - 4 t } }\). [You are not required to show this result.]
  4. Verify that this model also gives a terminal velocity of \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Calculate the velocity after 0.5 seconds as given by this model. The velocity of the particle after 0.5 seconds is measured as \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  5. Which of the two models fits the data better?
Question 8
View details
8 Fig. 8 shows a searchlight, mounted at a point A, 5 metres above level ground. Its beam is in the shape of a cone with axis AC , where C is on the ground. AC is angled at \(\alpha\) to the vertical. The beam produces an oval-shaped area of light on the ground, of length DE . The width of the oval at C is GF . Angles DAC, EAC, FAC and GAC are all \(\beta\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f657e167-e6f8-4df2-901b-067c32835877-04_684_872_461_278} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure} In the following, all lengths are in metres.
  1. Find AC in terms of \(\alpha\), and hence show that \(\mathrm { GF } = 10 \sec \alpha \tan \beta\).
  2. Show that \(\mathrm { CE } = 5 ( \tan ( \alpha + \beta ) - \tan \alpha )\). $$\text { Hence show that } \mathrm { CE } = \frac { 5 \tan \beta \sec ^ { 2 } \alpha } { 1 - \tan \alpha \tan \beta } \text {. }$$ Similarly, it can be shown that \(\mathrm { CD } = \frac { 5 \tan \beta \sec ^ { 2 } \alpha } { 1 + \tan \alpha \tan \beta }\). [You are not required to derive this result.]
    You are now given that \(\alpha = 45 ^ { \circ }\) and that \(\tan \beta = t\).
  3. Find CE and CD in terms of \(t\). Hence show that \(\mathrm { DE } = \frac { 20 t } { 1 - t ^ { 2 } }\).
  4. Show that \(\mathrm { GF } = 10 \sqrt { 2 } t\). For a certain value of \(\beta , \mathrm { DE } = 2 \mathrm { GF }\).
  5. Show that \(t ^ { 2 } = 1 - \frac { 1 } { \sqrt { 2 } }\). Hence find this value of \(\beta\).