OCR C4 2014 June — Question 10

Exam BoardOCR
ModuleC4 (Core Mathematics 4)
Year2014
SessionJune
TopicDifferential equations

10 A container in the shape of an inverted cone of radius 3 metres and vertical height 4.5 metres is initially filled with liquid fertiliser. This fertiliser is released through a hole in the bottom of the container at a rate of \(0.01 \mathrm {~m} ^ { 3 }\) per second. At time \(t\) seconds the fertiliser remaining in the container forms an inverted cone of height \(h\) metres.
[0pt] [The volume of a cone is \(V = \frac { 1 } { 3 } \pi r ^ { 2 } h\).]
  1. Show that \(h ^ { 2 } \frac { \mathrm {~d} h } { \mathrm {~d} t } = - \frac { 9 } { 400 \pi }\).
  2. Express \(h\) in terms of \(t\).
  3. Find the time it takes to empty the container, giving your answer to the nearest minute.