2 The points \(O ( 0,0,0 ) , A ( 2,8,2 ) , B ( 5,5,8 )\) and \(C ( 3 , - 3,6 )\) form a parallelogram \(O A B C\). Use a scalar product to find the acute angle between the diagonals of this parallelogram.
Find the first three terms in the expansion of \(( 1 - 2 x ) ^ { - \frac { 1 } { 2 } }\) in ascending powers of \(x\), where \(| x | < \frac { 1 } { 2 }\).
Hence find the coefficient of \(x ^ { 2 }\) in the expansion of \(\frac { x + 3 } { \sqrt { 1 - 2 x } }\).
6
\includegraphics[max width=\textwidth, alt={}, center]{02e31b5d-10dd-42b1-885a-6db610d788c3-2_570_1191_1509_420}
The diagram shows the curve with equation \(x ^ { 2 } + y ^ { 3 } - 8 x - 12 y = 4\). At each of the points \(P\) and \(Q\) the tangent to the curve is parallel to the \(y\)-axis. Find the coordinates of \(P\) and \(Q\).
10 A container in the shape of an inverted cone of radius 3 metres and vertical height 4.5 metres is initially filled with liquid fertiliser. This fertiliser is released through a hole in the bottom of the container at a rate of \(0.01 \mathrm {~m} ^ { 3 }\) per second. At time \(t\) seconds the fertiliser remaining in the container forms an inverted cone of height \(h\) metres. [0pt]
[The volume of a cone is \(V = \frac { 1 } { 3 } \pi r ^ { 2 } h\).]
Show that \(h ^ { 2 } \frac { \mathrm {~d} h } { \mathrm {~d} t } = - \frac { 9 } { 400 \pi }\).
Express \(h\) in terms of \(t\).
Find the time it takes to empty the container, giving your answer to the nearest minute.