The complex number \(\frac { 3 - 5 \mathrm { i } } { 1 + 4 \mathrm { i } }\) is denoted by \(u\). Showing your working, express \(u\) in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities \(| z - 2 - \mathrm { i } | \leqslant 1\) and \(| z - \mathrm { i } | \leqslant | z - 2 |\).
Calculate the maximum value of \(\arg z\) for points lying in the shaded region.